Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953395532> ?p ?o ?g. }
- W2953395532 endingPage "118464" @default.
- W2953395532 startingPage "118464" @default.
- W2953395532 abstract "This work proposes the application of artificial neural networks (ANN) to non-destructively predict the in vitro dissolution of pharmaceutical tablets from Process Analytical Technology (PAT) data. An extended release tablet formulation was studied, where the dissolution was influenced by the composition of the tablets and the tableting compression force. NIR and Raman spectra of the intact tablets were measured, and the dissolution of the tablets was modeled directly from the spectral data. Partial Least Square (PLS) regression and ANN models were developed for the different spectroscopic measurements individually as well as by combining them together. ANN provided up to 3% lower root mean square error for prediction (RMSEP) than the PLS models, due to its capability of modeling non-linearity between the process parameters and dissolution curves. The ANN model using reflection NIR spectra provided the most accurate predictions with 6.5 and 63 mean f1 and f2 values between the computed and measured dissolution curves, respectively. Furthermore, ANN served as a straightforward data fusion method without the need for additional preprocessing steps. The method could significantly advance data processing in the PAT environment, contribute to an enhanced real-time release testing procedure and hence the increased efficacy of dissolution testing." @default.
- W2953395532 created "2019-07-12" @default.
- W2953395532 creator A5022901955 @default.
- W2953395532 creator A5031956388 @default.
- W2953395532 creator A5042634883 @default.
- W2953395532 creator A5053450304 @default.
- W2953395532 creator A5064823224 @default.
- W2953395532 creator A5088674084 @default.
- W2953395532 creator A5091353806 @default.
- W2953395532 date "2019-08-01" @default.
- W2953395532 modified "2023-09-27" @default.
- W2953395532 title "Application of artificial neural networks for Process Analytical Technology-based dissolution testing" @default.
- W2953395532 cites W1529049134 @default.
- W2953395532 cites W1559243893 @default.
- W2953395532 cites W1563946068 @default.
- W2953395532 cites W1786404767 @default.
- W2953395532 cites W180389365 @default.
- W2953395532 cites W1988115241 @default.
- W2953395532 cites W1993766644 @default.
- W2953395532 cites W1996641506 @default.
- W2953395532 cites W1997408710 @default.
- W2953395532 cites W2010188685 @default.
- W2953395532 cites W2012031098 @default.
- W2953395532 cites W2015430172 @default.
- W2953395532 cites W2027178166 @default.
- W2953395532 cites W2035899577 @default.
- W2953395532 cites W2036629566 @default.
- W2953395532 cites W2039929264 @default.
- W2953395532 cites W2041115671 @default.
- W2953395532 cites W2048144365 @default.
- W2953395532 cites W2053785672 @default.
- W2953395532 cites W2071924901 @default.
- W2953395532 cites W2072462334 @default.
- W2953395532 cites W2073010988 @default.
- W2953395532 cites W2080364776 @default.
- W2953395532 cites W2083259132 @default.
- W2953395532 cites W2089842689 @default.
- W2953395532 cites W2100847075 @default.
- W2953395532 cites W2101616430 @default.
- W2953395532 cites W2115439624 @default.
- W2953395532 cites W2118230990 @default.
- W2953395532 cites W2137961818 @default.
- W2953395532 cites W2180891719 @default.
- W2953395532 cites W2297290677 @default.
- W2953395532 cites W2509983393 @default.
- W2953395532 cites W2574589167 @default.
- W2953395532 cites W2574612889 @default.
- W2953395532 cites W2604896855 @default.
- W2953395532 cites W2735836734 @default.
- W2953395532 cites W2766837923 @default.
- W2953395532 cites W2799774742 @default.
- W2953395532 cites W2883070719 @default.
- W2953395532 cites W2904976839 @default.
- W2953395532 cites W2911546748 @default.
- W2953395532 cites W2914966085 @default.
- W2953395532 doi "https://doi.org/10.1016/j.ijpharm.2019.118464" @default.
- W2953395532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31252145" @default.
- W2953395532 hasPublicationYear "2019" @default.
- W2953395532 type Work @default.
- W2953395532 sameAs 2953395532 @default.
- W2953395532 citedByCount "48" @default.
- W2953395532 countsByYear W29533955322020 @default.
- W2953395532 countsByYear W29533955322021 @default.
- W2953395532 countsByYear W29533955322022 @default.
- W2953395532 countsByYear W29533955322023 @default.
- W2953395532 crossrefType "journal-article" @default.
- W2953395532 hasAuthorship W2953395532A5022901955 @default.
- W2953395532 hasAuthorship W2953395532A5031956388 @default.
- W2953395532 hasAuthorship W2953395532A5042634883 @default.
- W2953395532 hasAuthorship W2953395532A5053450304 @default.
- W2953395532 hasAuthorship W2953395532A5064823224 @default.
- W2953395532 hasAuthorship W2953395532A5088674084 @default.
- W2953395532 hasAuthorship W2953395532A5091353806 @default.
- W2953395532 hasConcept C105795698 @default.
- W2953395532 hasConcept C127413603 @default.
- W2953395532 hasConcept C139945424 @default.
- W2953395532 hasConcept C14029885 @default.
- W2953395532 hasConcept C147789679 @default.
- W2953395532 hasConcept C154945302 @default.
- W2953395532 hasConcept C174998907 @default.
- W2953395532 hasConcept C178144697 @default.
- W2953395532 hasConcept C185592680 @default.
- W2953395532 hasConcept C186060115 @default.
- W2953395532 hasConcept C192562407 @default.
- W2953395532 hasConcept C21547014 @default.
- W2953395532 hasConcept C2779849058 @default.
- W2953395532 hasConcept C2781430271 @default.
- W2953395532 hasConcept C33923547 @default.
- W2953395532 hasConcept C41008148 @default.
- W2953395532 hasConcept C43617362 @default.
- W2953395532 hasConcept C50644808 @default.
- W2953395532 hasConcept C86803240 @default.
- W2953395532 hasConcept C88380143 @default.
- W2953395532 hasConceptScore W2953395532C105795698 @default.
- W2953395532 hasConceptScore W2953395532C127413603 @default.
- W2953395532 hasConceptScore W2953395532C139945424 @default.
- W2953395532 hasConceptScore W2953395532C14029885 @default.
- W2953395532 hasConceptScore W2953395532C147789679 @default.