Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953423780> ?p ?o ?g. }
- W2953423780 endingPage "3676" @default.
- W2953423780 startingPage "3665" @default.
- W2953423780 abstract "A band selection method named weighted kernel regularization (WKR) is proposed for hyperspectral imagery (HSI) classification. The WKR aims to select dissimilar and class-separable bands to better model the relationship between labeled samples. First, the WKR considers nonlinear structure of hyperspectral data and models nonlinear relations between HSI samples and their class labels using a weighted kernel ridge regression (WKRR) program with respect to sample coefficients. Second, it combines the L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> penalty term of weights on all bands with the above WKRR program into the unified framework of WKR. The L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> penalty term considers divergent contributions from different bands in describing nonlinear relations and guarantees the sparsity of band weights. Third, the WKR algorithm implements the KerNel Iterative-based Feature Extraction (KNIFE) algorithm to estimate the proper band weights. The KNIFE linearizes the nonlinear kernels to avoid high computational cost, and iteratively minimizes two convex subproblems with respect to the sample coefficients and band weights. Finally, the first k bands with larger weights and larger dissimilarity with other bands are automatically chosen to form the band subset. Experimental results show that the WKR outperforms the state-of-the-art methods in classification accuracies with a lower computational cost." @default.
- W2953423780 created "2019-07-12" @default.
- W2953423780 creator A5033017179 @default.
- W2953423780 creator A5036030486 @default.
- W2953423780 creator A5050009113 @default.
- W2953423780 creator A5074018705 @default.
- W2953423780 date "2019-09-01" @default.
- W2953423780 modified "2023-10-18" @default.
- W2953423780 title "Hyperspectral Band Selection Using Weighted Kernel Regularization" @default.
- W2953423780 cites W1540155273 @default.
- W2953423780 cites W1676402723 @default.
- W2953423780 cites W176909285 @default.
- W2953423780 cites W1902936532 @default.
- W2953423780 cites W1932531222 @default.
- W2953423780 cites W1980007140 @default.
- W2953423780 cites W1981728511 @default.
- W2953423780 cites W2008847349 @default.
- W2953423780 cites W2008957755 @default.
- W2953423780 cites W2012255037 @default.
- W2953423780 cites W2022631295 @default.
- W2953423780 cites W2028436154 @default.
- W2953423780 cites W2028711756 @default.
- W2953423780 cites W2030629635 @default.
- W2953423780 cites W2039666939 @default.
- W2953423780 cites W2042294722 @default.
- W2953423780 cites W2050834445 @default.
- W2953423780 cites W2051104903 @default.
- W2953423780 cites W2051968191 @default.
- W2953423780 cites W2052497509 @default.
- W2953423780 cites W2071821878 @default.
- W2953423780 cites W2073786624 @default.
- W2953423780 cites W2085907447 @default.
- W2953423780 cites W2086860003 @default.
- W2953423780 cites W2087263574 @default.
- W2953423780 cites W2088657558 @default.
- W2953423780 cites W2095981367 @default.
- W2953423780 cites W2108995755 @default.
- W2953423780 cites W2111282613 @default.
- W2953423780 cites W2137205624 @default.
- W2953423780 cites W2138038253 @default.
- W2953423780 cites W2143277109 @default.
- W2953423780 cites W2150990614 @default.
- W2953423780 cites W2191483095 @default.
- W2953423780 cites W2250104552 @default.
- W2953423780 cites W2281000252 @default.
- W2953423780 cites W2288723698 @default.
- W2953423780 cites W2292865806 @default.
- W2953423780 cites W2315258102 @default.
- W2953423780 cites W2316226477 @default.
- W2953423780 cites W2340318445 @default.
- W2953423780 cites W2494485523 @default.
- W2953423780 cites W2514028694 @default.
- W2953423780 cites W2518815253 @default.
- W2953423780 cites W2562461367 @default.
- W2953423780 cites W2571192787 @default.
- W2953423780 cites W2572810799 @default.
- W2953423780 cites W2574404198 @default.
- W2953423780 cites W2719511702 @default.
- W2953423780 cites W3105100264 @default.
- W2953423780 cites W3150214740 @default.
- W2953423780 doi "https://doi.org/10.1109/jstars.2019.2922201" @default.
- W2953423780 hasPublicationYear "2019" @default.
- W2953423780 type Work @default.
- W2953423780 sameAs 2953423780 @default.
- W2953423780 citedByCount "26" @default.
- W2953423780 countsByYear W29534237802020 @default.
- W2953423780 countsByYear W29534237802021 @default.
- W2953423780 countsByYear W29534237802022 @default.
- W2953423780 countsByYear W29534237802023 @default.
- W2953423780 crossrefType "journal-article" @default.
- W2953423780 hasAuthorship W2953423780A5033017179 @default.
- W2953423780 hasAuthorship W2953423780A5036030486 @default.
- W2953423780 hasAuthorship W2953423780A5050009113 @default.
- W2953423780 hasAuthorship W2953423780A5074018705 @default.
- W2953423780 hasConcept C11413529 @default.
- W2953423780 hasConcept C114614502 @default.
- W2953423780 hasConcept C121332964 @default.
- W2953423780 hasConcept C122280245 @default.
- W2953423780 hasConcept C12267149 @default.
- W2953423780 hasConcept C153180895 @default.
- W2953423780 hasConcept C154945302 @default.
- W2953423780 hasConcept C158622935 @default.
- W2953423780 hasConcept C159078339 @default.
- W2953423780 hasConcept C2776135515 @default.
- W2953423780 hasConcept C33923547 @default.
- W2953423780 hasConcept C41008148 @default.
- W2953423780 hasConcept C62520636 @default.
- W2953423780 hasConcept C74193536 @default.
- W2953423780 hasConceptScore W2953423780C11413529 @default.
- W2953423780 hasConceptScore W2953423780C114614502 @default.
- W2953423780 hasConceptScore W2953423780C121332964 @default.
- W2953423780 hasConceptScore W2953423780C122280245 @default.
- W2953423780 hasConceptScore W2953423780C12267149 @default.
- W2953423780 hasConceptScore W2953423780C153180895 @default.
- W2953423780 hasConceptScore W2953423780C154945302 @default.
- W2953423780 hasConceptScore W2953423780C158622935 @default.
- W2953423780 hasConceptScore W2953423780C159078339 @default.
- W2953423780 hasConceptScore W2953423780C2776135515 @default.