Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953450146> ?p ?o ?g. }
- W2953450146 abstract "Abstract A key aim of post-genomic biomedical research is to systematically integrate and model all molecules and their interactions in living cells. Existing research usually only focusing on the associations between individual or very limited type of molecules. But the interactions between molecules shouldn’t be isolated but interconnected and influenced. In this study, we revealed, constructed and analyzed a large-scale molecular association network of multiple biomolecules in human cells by modeling all associations among lncRNA, miRNA, protein, circRNA, microbe, drug, and disease, in which various associations are interconnected and any type of associations can be predicted. More specifically, we defined the molecular associations network and constructed a molecular associations dataset containing 105546 associations. Then, each node is represented by its attribute feature and network embedding learned by Structural Deep Network Embedding. Moreover, Random Forest is trained to predict any kind of associations. And we compared the features and classifiers under five-fold cross-validation. Our method achieves a remarkable performance on entire molecular associations network with an AUC of 0.9552 and an AUPR of 0.9338. To further evaluate the performance of our method, a case study for predicting lncRNA-protein interactions was executed. The experimental results demonstrate that the systematic insight for understanding the synergistic interactions between various molecules and complex diseases. It is anticipated that this work can bring beneficial inspiration and advance related systems biology and biomedical research. Author Summary The interactions between the various biomolecules in the cells should not be isolated, but interconnected and influenced. There have been many valuable studies on the interactions between two individual molecules. Based on a systematic and holistic perspective, we revealed and constructed a large-scale molecular associations network by combining various associations in human living cells, including miRNA-lncRNA association, miRNA-disease association, miRNA-protein interaction, lncRNA-disease association, protein-protein interaction, protein-disease association, drug-protein interaction, drug-disease interaction, and lncRNA-protein interaction. To model and analyze this molecular associations network, we employed the network representation learning model to learn how to represent the node. Each node in the network can be represented by network embedding and its own attribute information. Any node can be classified. And any type of the associations in this network can be predicted, which can be considered as link prediction task. Our work provides a new systematic view and conceptual framework to understand complex diseases and life activities. It is anticipated that our study can advance related biological macromolecules, systems biology and biomedical research, and bring some meaningful inspiration." @default.
- W2953450146 created "2019-07-12" @default.
- W2953450146 creator A5014121271 @default.
- W2953450146 creator A5019054788 @default.
- W2953450146 creator A5082017081 @default.
- W2953450146 date "2019-07-04" @default.
- W2953450146 modified "2023-09-23" @default.
- W2953450146 title "Construct a molecular associations network to systematically understand intermolecular associations in Human cells" @default.
- W2953450146 cites W1158178075 @default.
- W2953450146 cites W1975147762 @default.
- W2953450146 cites W1982267716 @default.
- W2953450146 cites W2003494331 @default.
- W2953450146 cites W2039244683 @default.
- W2953450146 cites W2053186076 @default.
- W2953450146 cites W2090891622 @default.
- W2953450146 cites W2103368657 @default.
- W2953450146 cites W2128983843 @default.
- W2953450146 cites W2137734450 @default.
- W2953450146 cites W2171466942 @default.
- W2953450146 cites W2313125707 @default.
- W2953450146 cites W2315196278 @default.
- W2953450146 cites W2393319904 @default.
- W2953450146 cites W2415243320 @default.
- W2953450146 cites W2537623931 @default.
- W2953450146 cites W2537679995 @default.
- W2953450146 cites W2601934706 @default.
- W2953450146 cites W2748551035 @default.
- W2953450146 cites W2753550436 @default.
- W2953450146 cites W2786247882 @default.
- W2953450146 cites W2793344725 @default.
- W2953450146 cites W2800766678 @default.
- W2953450146 cites W2805643613 @default.
- W2953450146 cites W2809867059 @default.
- W2953450146 cites W2896725104 @default.
- W2953450146 cites W2897252949 @default.
- W2953450146 cites W2903096015 @default.
- W2953450146 cites W2903959374 @default.
- W2953450146 cites W2912896532 @default.
- W2953450146 cites W2923922207 @default.
- W2953450146 cites W3104097132 @default.
- W2953450146 cites W3105705953 @default.
- W2953450146 cites W4291474301 @default.
- W2953450146 doi "https://doi.org/10.1101/693051" @default.
- W2953450146 hasPublicationYear "2019" @default.
- W2953450146 type Work @default.
- W2953450146 sameAs 2953450146 @default.
- W2953450146 citedByCount "0" @default.
- W2953450146 crossrefType "posted-content" @default.
- W2953450146 hasAuthorship W2953450146A5014121271 @default.
- W2953450146 hasAuthorship W2953450146A5019054788 @default.
- W2953450146 hasAuthorship W2953450146A5082017081 @default.
- W2953450146 hasBestOaLocation W29534501461 @default.
- W2953450146 hasConcept C121332964 @default.
- W2953450146 hasConcept C142853389 @default.
- W2953450146 hasConcept C154945302 @default.
- W2953450146 hasConcept C15744967 @default.
- W2953450146 hasConcept C199360897 @default.
- W2953450146 hasConcept C2780801425 @default.
- W2953450146 hasConcept C28225019 @default.
- W2953450146 hasConcept C41008148 @default.
- W2953450146 hasConcept C41608201 @default.
- W2953450146 hasConcept C49853544 @default.
- W2953450146 hasConcept C542102704 @default.
- W2953450146 hasConcept C54355233 @default.
- W2953450146 hasConcept C62520636 @default.
- W2953450146 hasConcept C62611344 @default.
- W2953450146 hasConcept C70721500 @default.
- W2953450146 hasConcept C86803240 @default.
- W2953450146 hasConceptScore W2953450146C121332964 @default.
- W2953450146 hasConceptScore W2953450146C142853389 @default.
- W2953450146 hasConceptScore W2953450146C154945302 @default.
- W2953450146 hasConceptScore W2953450146C15744967 @default.
- W2953450146 hasConceptScore W2953450146C199360897 @default.
- W2953450146 hasConceptScore W2953450146C2780801425 @default.
- W2953450146 hasConceptScore W2953450146C28225019 @default.
- W2953450146 hasConceptScore W2953450146C41008148 @default.
- W2953450146 hasConceptScore W2953450146C41608201 @default.
- W2953450146 hasConceptScore W2953450146C49853544 @default.
- W2953450146 hasConceptScore W2953450146C542102704 @default.
- W2953450146 hasConceptScore W2953450146C54355233 @default.
- W2953450146 hasConceptScore W2953450146C62520636 @default.
- W2953450146 hasConceptScore W2953450146C62611344 @default.
- W2953450146 hasConceptScore W2953450146C70721500 @default.
- W2953450146 hasConceptScore W2953450146C86803240 @default.
- W2953450146 hasLocation W29534501461 @default.
- W2953450146 hasOpenAccess W2953450146 @default.
- W2953450146 hasPrimaryLocation W29534501461 @default.
- W2953450146 hasRelatedWork W1481723101 @default.
- W2953450146 hasRelatedWork W154234578 @default.
- W2953450146 hasRelatedWork W1979799211 @default.
- W2953450146 hasRelatedWork W2153125191 @default.
- W2953450146 hasRelatedWork W2415067505 @default.
- W2953450146 hasRelatedWork W2489080180 @default.
- W2953450146 hasRelatedWork W2626127376 @default.
- W2953450146 hasRelatedWork W2952153265 @default.
- W2953450146 hasRelatedWork W2962049406 @default.
- W2953450146 hasRelatedWork W2986990569 @default.
- W2953450146 hasRelatedWork W2990063070 @default.
- W2953450146 hasRelatedWork W2996038193 @default.
- W2953450146 hasRelatedWork W3006242222 @default.