Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953521290> ?p ?o ?g. }
- W2953521290 abstract "Objective: To test automated in vivo estimation of active and passive skeletal muscle states using ultrasonic imaging. Background: Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal intramuscular states. Ultrasound (US) allows non-invasive imaging of muscle, yet current computational approaches have never achieved simultaneous extraction nor generalisation of independently varying, active and passive states. We use deep learning to investigate the generalizable content of 2D US muscle images. Method: US data synchronized with electromyography of the calf muscles, with measures of joint moment/angle were recorded from 32 healthy participants (7 female, ages: 27.5, 19-65). We extracted a region of interest of medial gastrocnemius and soleus using our prior developed accurate segmentation algorithm. From the segmented images, a deep convolutional neural network was trained to predict three absolute, drift-free, components of the neurobiomechanical state (activity, joint angle, joint moment) during experimentally designed, simultaneous, independent variation of passive (joint angle) and active (electromyography) inputs. Results: For all 32 held-out participants (16-fold cross-validation) the ankle joint angle, electromyography, and joint moment were estimated to accuracy 55+-8%, 57+-11%, and 46+-9% respectively. Significance: With 2D US imaging, deep neural networks can encode in generalizable form, the activity-length-tension state relationship of muscle. Observation only, low power, 2D US imaging can provide a new category of technology for non-invasive estimation of neural output, length and tension in skeletal muscle. This proof of principle has value for personalised muscle diagnosis in pain, injury, neurological conditions, neuropathies, myopathies and ageing." @default.
- W2953521290 created "2019-07-12" @default.
- W2953521290 creator A5009412175 @default.
- W2953521290 creator A5026098931 @default.
- W2953521290 date "2019-07-02" @default.
- W2953521290 modified "2023-09-27" @default.
- W2953521290 title "Estimation of Absolute States of Human Skeletal Muscle via Standard B-Mode Ultrasound Imaging and Deep Convolutional Neural Networks" @default.
- W2953521290 cites W1493810839 @default.
- W2953521290 cites W1665214252 @default.
- W2953521290 cites W1677182931 @default.
- W2953521290 cites W1710476689 @default.
- W2953521290 cites W1745334888 @default.
- W2953521290 cites W1813659000 @default.
- W2953521290 cites W1829260475 @default.
- W2953521290 cites W1959608418 @default.
- W2953521290 cites W1968781294 @default.
- W2953521290 cites W1970349301 @default.
- W2953521290 cites W1977075267 @default.
- W2953521290 cites W1978106835 @default.
- W2953521290 cites W1993845689 @default.
- W2953521290 cites W2008276678 @default.
- W2953521290 cites W2010279742 @default.
- W2953521290 cites W2017217079 @default.
- W2953521290 cites W2020579595 @default.
- W2953521290 cites W2021774695 @default.
- W2953521290 cites W2031438724 @default.
- W2953521290 cites W2031595164 @default.
- W2953521290 cites W2037500019 @default.
- W2953521290 cites W2037533679 @default.
- W2953521290 cites W2038952578 @default.
- W2953521290 cites W2039618430 @default.
- W2953521290 cites W2041758746 @default.
- W2953521290 cites W2046100450 @default.
- W2953521290 cites W2056189032 @default.
- W2953521290 cites W2057072817 @default.
- W2953521290 cites W2057170734 @default.
- W2953521290 cites W2058698830 @default.
- W2953521290 cites W2080486721 @default.
- W2953521290 cites W2085190694 @default.
- W2953521290 cites W2088002254 @default.
- W2953521290 cites W2093316730 @default.
- W2953521290 cites W2095705004 @default.
- W2953521290 cites W2097186999 @default.
- W2953521290 cites W2099308653 @default.
- W2953521290 cites W2100495367 @default.
- W2953521290 cites W2108616409 @default.
- W2953521290 cites W2112080959 @default.
- W2953521290 cites W2116064496 @default.
- W2953521290 cites W2117435472 @default.
- W2953521290 cites W2127589108 @default.
- W2953521290 cites W2130267346 @default.
- W2953521290 cites W2136655611 @default.
- W2953521290 cites W2141073367 @default.
- W2953521290 cites W2142085282 @default.
- W2953521290 cites W2142724786 @default.
- W2953521290 cites W2154579312 @default.
- W2953521290 cites W2158037744 @default.
- W2953521290 cites W2161020449 @default.
- W2953521290 cites W2161940727 @default.
- W2953521290 cites W2163605009 @default.
- W2953521290 cites W2166607851 @default.
- W2953521290 cites W2176412452 @default.
- W2953521290 cites W2184045248 @default.
- W2953521290 cites W2194775991 @default.
- W2953521290 cites W2257067624 @default.
- W2953521290 cites W2290066123 @default.
- W2953521290 cites W2295107390 @default.
- W2953521290 cites W2439880944 @default.
- W2953521290 cites W2548537168 @default.
- W2953521290 cites W2566289208 @default.
- W2953521290 cites W2576292152 @default.
- W2953521290 cites W2583507823 @default.
- W2953521290 cites W2619008892 @default.
- W2953521290 cites W2633552667 @default.
- W2953521290 cites W2769986856 @default.
- W2953521290 cites W2783975527 @default.
- W2953521290 cites W2919115771 @default.
- W2953521290 cites W2963660819 @default.
- W2953521290 cites W2964121744 @default.
- W2953521290 cites W764651262 @default.
- W2953521290 hasPublicationYear "2019" @default.
- W2953521290 type Work @default.
- W2953521290 sameAs 2953521290 @default.
- W2953521290 citedByCount "1" @default.
- W2953521290 countsByYear W29535212902021 @default.
- W2953521290 crossrefType "posted-content" @default.
- W2953521290 hasAuthorship W2953521290A5009412175 @default.
- W2953521290 hasAuthorship W2953521290A5026098931 @default.
- W2953521290 hasConcept C105702510 @default.
- W2953521290 hasConcept C108583219 @default.
- W2953521290 hasConcept C121332964 @default.
- W2953521290 hasConcept C126838900 @default.
- W2953521290 hasConcept C127413603 @default.
- W2953521290 hasConcept C136229726 @default.
- W2953521290 hasConcept C143753070 @default.
- W2953521290 hasConcept C153180895 @default.
- W2953521290 hasConcept C154945302 @default.
- W2953521290 hasConcept C170154142 @default.
- W2953521290 hasConcept C179254644 @default.
- W2953521290 hasConcept C18555067 @default.