Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953539043> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2953539043 endingPage "2585" @default.
- W2953539043 startingPage "2575" @default.
- W2953539043 abstract "Aviation customer churn analysis is a difficult point, which has puzzled over airlines. The difficulties lie in the imbalance of customer churn data distribution and noisy data interference. Although some existing sampling techniques and ensemble models are good at dealing with class imbalance pro blem, noisy examples in dataset seriously affects the sampling quality and predictive accuracy of classifiers. Therefore, the purpose of our work is to effectively solve the problem of noise interference in imbalanced data classification and improve the effect of the ensemble classifier. In this paper, we propose a novel noise filtering algorithm that combined Tomek-link with distance weighted KNN (TWK), which can effectively filter the noise from both minority and majority class in the imbalanced dataset and prevent relative value samples from being rejected by mistake. We integrate TWK and feature sampling into EasyEnsemble to get a new ensemble model, named FSEE-TWK for short, for customer churn analysis. The introduction of feature sampling to FSEE-TWK accelerate the process of training and avoid model over-fitting. We obtained imbalanced customer data from a major Chinese airline to predict potential churn customers. We use F-Measure and G-Mean to evaluate the performance of the new ensemble model. The experimental results show that the proposed model can effectively improve the classification of datasets and significantly reduce the training time of the model." @default.
- W2953539043 created "2019-07-12" @default.
- W2953539043 creator A5024079482 @default.
- W2953539043 creator A5036640081 @default.
- W2953539043 creator A5047399342 @default.
- W2953539043 creator A5064357053 @default.
- W2953539043 date "2019-09-09" @default.
- W2953539043 modified "2023-10-05" @default.
- W2953539043 title "An efficient noise-filtered ensemble model for customer churn analysis in aviation industry" @default.
- W2953539043 cites W127422473 @default.
- W2953539043 cites W1496056137 @default.
- W2953539043 cites W1591261915 @default.
- W2953539043 cites W1982211005 @default.
- W2953539043 cites W1984160940 @default.
- W2953539043 cites W1993220166 @default.
- W2953539043 cites W1996932677 @default.
- W2953539043 cites W2001574227 @default.
- W2953539043 cites W2016577148 @default.
- W2953539043 cites W2037315593 @default.
- W2953539043 cites W2057589484 @default.
- W2953539043 cites W2080608097 @default.
- W2953539043 cites W2083551746 @default.
- W2953539043 cites W2087240369 @default.
- W2953539043 cites W2089215879 @default.
- W2953539043 cites W2096945460 @default.
- W2953539043 cites W2102739522 @default.
- W2953539043 cites W2104167780 @default.
- W2953539043 cites W2132791018 @default.
- W2953539043 cites W2148143831 @default.
- W2953539043 cites W2163783144 @default.
- W2953539043 cites W2183843206 @default.
- W2953539043 cites W2280888683 @default.
- W2953539043 cites W2290915708 @default.
- W2953539043 cites W2333673279 @default.
- W2953539043 cites W2488520068 @default.
- W2953539043 cites W2531607313 @default.
- W2953539043 cites W2901565938 @default.
- W2953539043 doi "https://doi.org/10.3233/jifs-182807" @default.
- W2953539043 hasPublicationYear "2019" @default.
- W2953539043 type Work @default.
- W2953539043 sameAs 2953539043 @default.
- W2953539043 citedByCount "4" @default.
- W2953539043 countsByYear W29535390432021 @default.
- W2953539043 countsByYear W29535390432023 @default.
- W2953539043 crossrefType "journal-article" @default.
- W2953539043 hasAuthorship W2953539043A5024079482 @default.
- W2953539043 hasAuthorship W2953539043A5036640081 @default.
- W2953539043 hasAuthorship W2953539043A5047399342 @default.
- W2953539043 hasAuthorship W2953539043A5064357053 @default.
- W2953539043 hasConcept C106131492 @default.
- W2953539043 hasConcept C115961682 @default.
- W2953539043 hasConcept C119857082 @default.
- W2953539043 hasConcept C119898033 @default.
- W2953539043 hasConcept C124101348 @default.
- W2953539043 hasConcept C153180895 @default.
- W2953539043 hasConcept C154945302 @default.
- W2953539043 hasConcept C31972630 @default.
- W2953539043 hasConcept C41008148 @default.
- W2953539043 hasConcept C45942800 @default.
- W2953539043 hasConcept C95623464 @default.
- W2953539043 hasConcept C99498987 @default.
- W2953539043 hasConceptScore W2953539043C106131492 @default.
- W2953539043 hasConceptScore W2953539043C115961682 @default.
- W2953539043 hasConceptScore W2953539043C119857082 @default.
- W2953539043 hasConceptScore W2953539043C119898033 @default.
- W2953539043 hasConceptScore W2953539043C124101348 @default.
- W2953539043 hasConceptScore W2953539043C153180895 @default.
- W2953539043 hasConceptScore W2953539043C154945302 @default.
- W2953539043 hasConceptScore W2953539043C31972630 @default.
- W2953539043 hasConceptScore W2953539043C41008148 @default.
- W2953539043 hasConceptScore W2953539043C45942800 @default.
- W2953539043 hasConceptScore W2953539043C95623464 @default.
- W2953539043 hasConceptScore W2953539043C99498987 @default.
- W2953539043 hasIssue "2" @default.
- W2953539043 hasLocation W29535390431 @default.
- W2953539043 hasOpenAccess W2953539043 @default.
- W2953539043 hasPrimaryLocation W29535390431 @default.
- W2953539043 hasRelatedWork W1514365828 @default.
- W2953539043 hasRelatedWork W1807784185 @default.
- W2953539043 hasRelatedWork W1909207154 @default.
- W2953539043 hasRelatedWork W2794896638 @default.
- W2953539043 hasRelatedWork W3101614107 @default.
- W2953539043 hasRelatedWork W3124390867 @default.
- W2953539043 hasRelatedWork W3149839747 @default.
- W2953539043 hasRelatedWork W3202800081 @default.
- W2953539043 hasRelatedWork W3204228978 @default.
- W2953539043 hasRelatedWork W45170056 @default.
- W2953539043 hasVolume "37" @default.
- W2953539043 isParatext "false" @default.
- W2953539043 isRetracted "false" @default.
- W2953539043 magId "2953539043" @default.
- W2953539043 workType "article" @default.