Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953571596> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2953571596 abstract "Medical image processing is the most emerging and challenging field nowadays . Magnetic Resonance Images act as a main source for the development of classification system. The extraction, identification and segmentation of affected region from Magnetic resonance brain image is significant but is a time consuming task for the clinical experts. To overcome this limitation, it is essential to use computer aided techniques. To improve accuracy and efficiency in medical segmentation process, the proposed tumor segmentation is based on adaptive threshold algorithm. Deep learning CNN classifier used to compare the test and trained data and produces the result for tumor. The proposed technique results have been evaluated and validated based on accuracy, sensitivity and specificity. The detection, extraction and classification of MR brain images is done by using MATLAB software." @default.
- W2953571596 created "2019-07-12" @default.
- W2953571596 creator A5012748788 @default.
- W2953571596 creator A5050883327 @default.
- W2953571596 creator A5078870398 @default.
- W2953571596 date "2018-12-01" @default.
- W2953571596 modified "2023-10-01" @default.
- W2953571596 title "Automated Detection and Segmentation of Brain Tumor Using Genetic Algorithm" @default.
- W2953571596 cites W1996010227 @default.
- W2953571596 cites W2029230120 @default.
- W2953571596 cites W2521681907 @default.
- W2953571596 cites W2541285718 @default.
- W2953571596 cites W2544376559 @default.
- W2953571596 cites W2567300890 @default.
- W2953571596 cites W2594020746 @default.
- W2953571596 cites W2750769565 @default.
- W2953571596 cites W2765619687 @default.
- W2953571596 cites W2783028492 @default.
- W2953571596 doi "https://doi.org/10.1109/icssit.2018.8748487" @default.
- W2953571596 hasPublicationYear "2018" @default.
- W2953571596 type Work @default.
- W2953571596 sameAs 2953571596 @default.
- W2953571596 citedByCount "6" @default.
- W2953571596 countsByYear W29535715962020 @default.
- W2953571596 countsByYear W29535715962021 @default.
- W2953571596 countsByYear W29535715962022 @default.
- W2953571596 countsByYear W29535715962023 @default.
- W2953571596 crossrefType "proceedings-article" @default.
- W2953571596 hasAuthorship W2953571596A5012748788 @default.
- W2953571596 hasAuthorship W2953571596A5050883327 @default.
- W2953571596 hasAuthorship W2953571596A5078870398 @default.
- W2953571596 hasConcept C124504099 @default.
- W2953571596 hasConcept C153180895 @default.
- W2953571596 hasConcept C154945302 @default.
- W2953571596 hasConcept C199360897 @default.
- W2953571596 hasConcept C2777904410 @default.
- W2953571596 hasConcept C31601959 @default.
- W2953571596 hasConcept C31972630 @default.
- W2953571596 hasConcept C41008148 @default.
- W2953571596 hasConcept C52622490 @default.
- W2953571596 hasConcept C89600930 @default.
- W2953571596 hasConcept C95623464 @default.
- W2953571596 hasConceptScore W2953571596C124504099 @default.
- W2953571596 hasConceptScore W2953571596C153180895 @default.
- W2953571596 hasConceptScore W2953571596C154945302 @default.
- W2953571596 hasConceptScore W2953571596C199360897 @default.
- W2953571596 hasConceptScore W2953571596C2777904410 @default.
- W2953571596 hasConceptScore W2953571596C31601959 @default.
- W2953571596 hasConceptScore W2953571596C31972630 @default.
- W2953571596 hasConceptScore W2953571596C41008148 @default.
- W2953571596 hasConceptScore W2953571596C52622490 @default.
- W2953571596 hasConceptScore W2953571596C89600930 @default.
- W2953571596 hasConceptScore W2953571596C95623464 @default.
- W2953571596 hasLocation W29535715961 @default.
- W2953571596 hasOpenAccess W2953571596 @default.
- W2953571596 hasPrimaryLocation W29535715961 @default.
- W2953571596 hasRelatedWork W2025133043 @default.
- W2953571596 hasRelatedWork W2150096676 @default.
- W2953571596 hasRelatedWork W2270529874 @default.
- W2953571596 hasRelatedWork W2291021983 @default.
- W2953571596 hasRelatedWork W2515060107 @default.
- W2953571596 hasRelatedWork W2791566664 @default.
- W2953571596 hasRelatedWork W2791987401 @default.
- W2953571596 hasRelatedWork W2813702396 @default.
- W2953571596 hasRelatedWork W2869733044 @default.
- W2953571596 hasRelatedWork W2890341778 @default.
- W2953571596 hasRelatedWork W2902258141 @default.
- W2953571596 hasRelatedWork W2964437467 @default.
- W2953571596 hasRelatedWork W2980308141 @default.
- W2953571596 hasRelatedWork W3043831225 @default.
- W2953571596 hasRelatedWork W3098827984 @default.
- W2953571596 hasRelatedWork W3113362604 @default.
- W2953571596 hasRelatedWork W3173237072 @default.
- W2953571596 hasRelatedWork W2184141830 @default.
- W2953571596 hasRelatedWork W2560766012 @default.
- W2953571596 hasRelatedWork W2612384214 @default.
- W2953571596 isParatext "false" @default.
- W2953571596 isRetracted "false" @default.
- W2953571596 magId "2953571596" @default.
- W2953571596 workType "article" @default.