Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953573586> ?p ?o ?g. }
- W2953573586 endingPage "101914" @default.
- W2953573586 startingPage "101914" @default.
- W2953573586 abstract "Adolescent major depressive disorder (MDD) is a highly prevalent, incapacitating and costly illness. Many depressed teens do not improve with cognitive behavioral therapy (CBT), a first-line treatment for adolescent MDD, and face devastating consequences of increased risk of suicide and many negative health outcomes. “Who will improve with CBT?” is a crucial question that remains unanswered, and treatment planning for adolescent depression remains biologically unguided. The purpose of this study was to utilize machine learning applied to patients' brain imaging data in order to help predict depressive symptom reduction with CBT. We applied supervised machine learning to diffusion MRI-based structural connectome data in order to predict symptom reduction in 30 depressed adolescents after three months of CBT. A set of 21 attributes was chosen, including the baseline depression score, age, gender, two global network properties, and node strengths of brain regions previously implicated in depression. The practical and robust J48 pruned tree classifier was utilized with a 10-fold cross-validation. The classification resulted in an 83% accuracy of predicting depressive symptom reduction. The resulting tree of size seven with only three attributes highlights the role of the right thalamus in predicting depressive symptom reduction with CBT. Additional analysis showed a significant negative correlation between the change in the depressive symptoms and the node strength of the right thalamus. Our results demonstrate that a machine learning algorithm that exclusively uses structural connectome data and the baseline depression score can predict with a high accuracy depressive symptom reduction in adolescent MDD with CBT. This knowledge can help improve treatment planning for adolescent depression." @default.
- W2953573586 created "2019-07-12" @default.
- W2953573586 creator A5009611646 @default.
- W2953573586 creator A5015905379 @default.
- W2953573586 creator A5030100878 @default.
- W2953573586 creator A5031458741 @default.
- W2953573586 creator A5063053695 @default.
- W2953573586 creator A5067999594 @default.
- W2953573586 creator A5077359554 @default.
- W2953573586 date "2019-01-01" @default.
- W2953573586 modified "2023-10-15" @default.
- W2953573586 title "Application of machine learning to structural connectome to predict symptom reduction in depressed adolescents with cognitive behavioral therapy (CBT)" @default.
- W2953573586 cites W1146031118 @default.
- W2953573586 cites W1649142435 @default.
- W2953573586 cites W1650810086 @default.
- W2953573586 cites W1708017765 @default.
- W2953573586 cites W1963873005 @default.
- W2953573586 cites W1967922673 @default.
- W2953573586 cites W1970006078 @default.
- W2953573586 cites W1986040793 @default.
- W2953573586 cites W1990561576 @default.
- W2953573586 cites W2002279230 @default.
- W2953573586 cites W2004056475 @default.
- W2953573586 cites W2005933475 @default.
- W2953573586 cites W2006096283 @default.
- W2953573586 cites W2006255846 @default.
- W2953573586 cites W2006877952 @default.
- W2953573586 cites W2013795356 @default.
- W2953573586 cites W2018255469 @default.
- W2953573586 cites W2032797601 @default.
- W2953573586 cites W2035291311 @default.
- W2953573586 cites W2038118196 @default.
- W2953573586 cites W2045621957 @default.
- W2953573586 cites W2058046532 @default.
- W2953573586 cites W2059798329 @default.
- W2953573586 cites W2060392554 @default.
- W2953573586 cites W2067412138 @default.
- W2953573586 cites W2094651577 @default.
- W2953573586 cites W2095438393 @default.
- W2953573586 cites W2100036649 @default.
- W2953573586 cites W2101328227 @default.
- W2953573586 cites W2113281483 @default.
- W2953573586 cites W2115449759 @default.
- W2953573586 cites W2115829905 @default.
- W2953573586 cites W2125910575 @default.
- W2953573586 cites W2126349398 @default.
- W2953573586 cites W2131601503 @default.
- W2953573586 cites W2133298009 @default.
- W2953573586 cites W2154282155 @default.
- W2953573586 cites W2163349072 @default.
- W2953573586 cites W2167822639 @default.
- W2953573586 cites W2168489054 @default.
- W2953573586 cites W2183950985 @default.
- W2953573586 cites W2223361536 @default.
- W2953573586 cites W2254051562 @default.
- W2953573586 cites W2417259630 @default.
- W2953573586 cites W2484860320 @default.
- W2953573586 cites W2492597892 @default.
- W2953573586 cites W2521795478 @default.
- W2953573586 cites W2523646773 @default.
- W2953573586 cites W2526989977 @default.
- W2953573586 cites W2563366117 @default.
- W2953573586 cites W2600118519 @default.
- W2953573586 cites W2618881572 @default.
- W2953573586 cites W2752781070 @default.
- W2953573586 cites W2759126744 @default.
- W2953573586 cites W2791897722 @default.
- W2953573586 cites W2899683911 @default.
- W2953573586 cites W4234682840 @default.
- W2953573586 cites W4236787519 @default.
- W2953573586 cites W4247434994 @default.
- W2953573586 cites W4252994814 @default.
- W2953573586 cites W4376596409 @default.
- W2953573586 doi "https://doi.org/10.1016/j.nicl.2019.101914" @default.
- W2953573586 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6627980" @default.
- W2953573586 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31491813" @default.
- W2953573586 hasPublicationYear "2019" @default.
- W2953573586 type Work @default.
- W2953573586 sameAs 2953573586 @default.
- W2953573586 citedByCount "12" @default.
- W2953573586 countsByYear W29535735862020 @default.
- W2953573586 countsByYear W29535735862021 @default.
- W2953573586 countsByYear W29535735862022 @default.
- W2953573586 countsByYear W29535735862023 @default.
- W2953573586 crossrefType "journal-article" @default.
- W2953573586 hasAuthorship W2953573586A5009611646 @default.
- W2953573586 hasAuthorship W2953573586A5015905379 @default.
- W2953573586 hasAuthorship W2953573586A5030100878 @default.
- W2953573586 hasAuthorship W2953573586A5031458741 @default.
- W2953573586 hasAuthorship W2953573586A5063053695 @default.
- W2953573586 hasAuthorship W2953573586A5067999594 @default.
- W2953573586 hasAuthorship W2953573586A5077359554 @default.
- W2953573586 hasBestOaLocation W29535735861 @default.
- W2953573586 hasConcept C118552586 @default.
- W2953573586 hasConcept C119857082 @default.
- W2953573586 hasConcept C139719470 @default.
- W2953573586 hasConcept C154945302 @default.
- W2953573586 hasConcept C15744967 @default.