Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953640432> ?p ?o ?g. }
- W2953640432 endingPage "1" @default.
- W2953640432 startingPage "1" @default.
- W2953640432 abstract "In offline data-driven optimization, only historical data is available for optimization, making it impossible to validate the obtained solutions during the optimization. To address these difficulties, this paper proposes an evolutionary algorithm assisted by two surrogates, one coarse model and one fine model. The coarse surrogate (CS) aims to guide the algorithm to quickly find a promising subregion in the search space, whereas the fine one focuses on leveraging good solutions according to the knowledge transferred from the CS. Since the obtained Pareto optimal solutions have not been validated using the real fitness function, a technique for generating the final optimal solutions is suggested. All achieved solutions during the whole optimization process are grouped into a number of clusters according to a set of reference vectors. Then, the solutions in each cluster are averaged and outputted as the final solution of that cluster. The proposed algorithm is compared with its three variants and two state-of-the-art offline data-driven multiobjective algorithms on eight benchmark problems to demonstrate its effectiveness. Finally, the proposed algorithm is successfully applied to an operational indices optimization problem in beneficiation processes." @default.
- W2953640432 created "2019-07-12" @default.
- W2953640432 creator A5022740106 @default.
- W2953640432 creator A5032314861 @default.
- W2953640432 creator A5042520521 @default.
- W2953640432 creator A5057021534 @default.
- W2953640432 date "2020-01-01" @default.
- W2953640432 modified "2023-09-29" @default.
- W2953640432 title "Off-line Data-driven Multi-objective Optimization: Knowledge Transfer between Surrogates and Generation of Final Solutions" @default.
- W2953640432 cites W1491137673 @default.
- W2953640432 cites W1520622896 @default.
- W2953640432 cites W1846834309 @default.
- W2953640432 cites W1971066704 @default.
- W2953640432 cites W2000503034 @default.
- W2953640432 cites W2011174137 @default.
- W2953640432 cites W2012921684 @default.
- W2953640432 cites W2013695155 @default.
- W2953640432 cites W2022485595 @default.
- W2953640432 cites W2023131636 @default.
- W2953640432 cites W2031569136 @default.
- W2953640432 cites W2031801005 @default.
- W2953640432 cites W2034337422 @default.
- W2953640432 cites W2035266157 @default.
- W2953640432 cites W2038420231 @default.
- W2953640432 cites W2074959697 @default.
- W2953640432 cites W2081391569 @default.
- W2953640432 cites W2085197225 @default.
- W2953640432 cites W2088990166 @default.
- W2953640432 cites W2102912701 @default.
- W2953640432 cites W2105245738 @default.
- W2953640432 cites W2109088021 @default.
- W2953640432 cites W2110194546 @default.
- W2953640432 cites W2111526171 @default.
- W2953640432 cites W2113442785 @default.
- W2953640432 cites W2126105956 @default.
- W2953640432 cites W2140886193 @default.
- W2953640432 cites W2141467859 @default.
- W2953640432 cites W2143381319 @default.
- W2953640432 cites W2152382740 @default.
- W2953640432 cites W2153654820 @default.
- W2953640432 cites W2156106639 @default.
- W2953640432 cites W2166739626 @default.
- W2953640432 cites W2210407830 @default.
- W2953640432 cites W2336467679 @default.
- W2953640432 cites W2343601797 @default.
- W2953640432 cites W2410677328 @default.
- W2953640432 cites W2413527939 @default.
- W2953640432 cites W2497052677 @default.
- W2953640432 cites W2502132549 @default.
- W2953640432 cites W2546299924 @default.
- W2953640432 cites W2558577118 @default.
- W2953640432 cites W2566693540 @default.
- W2953640432 cites W2588272390 @default.
- W2953640432 cites W2591927365 @default.
- W2953640432 cites W2595502370 @default.
- W2953640432 cites W2679717297 @default.
- W2953640432 cites W2725100189 @default.
- W2953640432 cites W2729909848 @default.
- W2953640432 cites W2764251381 @default.
- W2953640432 cites W2770581177 @default.
- W2953640432 cites W2776317535 @default.
- W2953640432 cites W2785988364 @default.
- W2953640432 cites W2800879376 @default.
- W2953640432 cites W2890830465 @default.
- W2953640432 cites W2891186800 @default.
- W2953640432 cites W2896830898 @default.
- W2953640432 cites W3037787799 @default.
- W2953640432 cites W3081274109 @default.
- W2953640432 doi "https://doi.org/10.1109/tevc.2019.2925959" @default.
- W2953640432 hasPublicationYear "2020" @default.
- W2953640432 type Work @default.
- W2953640432 sameAs 2953640432 @default.
- W2953640432 citedByCount "25" @default.
- W2953640432 countsByYear W29536404322020 @default.
- W2953640432 countsByYear W29536404322021 @default.
- W2953640432 countsByYear W29536404322022 @default.
- W2953640432 countsByYear W29536404322023 @default.
- W2953640432 crossrefType "journal-article" @default.
- W2953640432 hasAuthorship W2953640432A5022740106 @default.
- W2953640432 hasAuthorship W2953640432A5032314861 @default.
- W2953640432 hasAuthorship W2953640432A5042520521 @default.
- W2953640432 hasAuthorship W2953640432A5057021534 @default.
- W2953640432 hasBestOaLocation W29536404322 @default.
- W2953640432 hasConcept C111919701 @default.
- W2953640432 hasConcept C11413529 @default.
- W2953640432 hasConcept C119857082 @default.
- W2953640432 hasConcept C124101348 @default.
- W2953640432 hasConcept C126255220 @default.
- W2953640432 hasConcept C13280743 @default.
- W2953640432 hasConcept C137635306 @default.
- W2953640432 hasConcept C137836250 @default.
- W2953640432 hasConcept C154945302 @default.
- W2953640432 hasConcept C159149176 @default.
- W2953640432 hasConcept C177264268 @default.
- W2953640432 hasConcept C185798385 @default.
- W2953640432 hasConcept C199360897 @default.
- W2953640432 hasConcept C205649164 @default.
- W2953640432 hasConcept C33923547 @default.