Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953650058> ?p ?o ?g. }
- W2953650058 endingPage "3622" @default.
- W2953650058 startingPage "3615" @default.
- W2953650058 abstract "As in other remote-sensing applications, collecting ground-truth information from the earth's surface is expensive and time-consuming process for hyperspectral imaging. In this study, a deep learning-based semisupervised learning framework is proposed to solve this small labeled sample size problem. The main contribution of this study is the construction of a deep learning model for each hyperspectral sensor type that can be used for data obtained from these sensors. In the proposed framework, the “trained base model” is obtained with any dataset from a hyperspectral sensor, and fine-tuned and evaluated with another dataset. In this way, a general deep model is developed for extracting deep features which can be linearly classified or clustered. The system is evaluated with three different clustering techniques, the modified k-means, subtractive, and mean-shift clustering, for selecting initial representative labeled training samples comparatively. Another contribution of this study is to exploit the labeled and unlabeled sample information with linear transductive support vector machines. The proposed semisupervised learning framework is proven by the experimental results using different number of small sample sizes." @default.
- W2953650058 created "2019-07-12" @default.
- W2953650058 creator A5011434117 @default.
- W2953650058 creator A5082045666 @default.
- W2953650058 date "2019-09-01" @default.
- W2953650058 modified "2023-10-05" @default.
- W2953650058 title "Semisupervised Hyperspectral Image Classification Using Deep Features" @default.
- W2953650058 cites W1516724916 @default.
- W2953650058 cites W1978074368 @default.
- W2953650058 cites W1988714027 @default.
- W2953650058 cites W2009286595 @default.
- W2953650058 cites W2029316659 @default.
- W2953650058 cites W2035413749 @default.
- W2953650058 cites W2039077039 @default.
- W2953650058 cites W2044822643 @default.
- W2953650058 cites W2057522815 @default.
- W2953650058 cites W2067191022 @default.
- W2953650058 cites W2086762254 @default.
- W2953650058 cites W2114819256 @default.
- W2953650058 cites W2131864940 @default.
- W2953650058 cites W2153409933 @default.
- W2953650058 cites W2161381512 @default.
- W2953650058 cites W2179290474 @default.
- W2953650058 cites W2296398754 @default.
- W2953650058 cites W2414767909 @default.
- W2953650058 cites W2422064242 @default.
- W2953650058 cites W2500751094 @default.
- W2953650058 cites W2545637130 @default.
- W2953650058 cites W2547852346 @default.
- W2953650058 cites W2589840226 @default.
- W2953650058 cites W2620830647 @default.
- W2953650058 cites W2719511702 @default.
- W2953650058 cites W2730625536 @default.
- W2953650058 cites W2768975974 @default.
- W2953650058 cites W2777427437 @default.
- W2953650058 cites W2809113079 @default.
- W2953650058 cites W2904995961 @default.
- W2953650058 cites W2919115771 @default.
- W2953650058 doi "https://doi.org/10.1109/jstars.2019.2921033" @default.
- W2953650058 hasPublicationYear "2019" @default.
- W2953650058 type Work @default.
- W2953650058 sameAs 2953650058 @default.
- W2953650058 citedByCount "14" @default.
- W2953650058 countsByYear W29536500582020 @default.
- W2953650058 countsByYear W29536500582021 @default.
- W2953650058 countsByYear W29536500582022 @default.
- W2953650058 countsByYear W29536500582023 @default.
- W2953650058 crossrefType "journal-article" @default.
- W2953650058 hasAuthorship W2953650058A5011434117 @default.
- W2953650058 hasAuthorship W2953650058A5082045666 @default.
- W2953650058 hasConcept C108583219 @default.
- W2953650058 hasConcept C111919701 @default.
- W2953650058 hasConcept C119857082 @default.
- W2953650058 hasConcept C12267149 @default.
- W2953650058 hasConcept C124101348 @default.
- W2953650058 hasConcept C146849305 @default.
- W2953650058 hasConcept C153180895 @default.
- W2953650058 hasConcept C154945302 @default.
- W2953650058 hasConcept C159078339 @default.
- W2953650058 hasConcept C185592680 @default.
- W2953650058 hasConcept C198531522 @default.
- W2953650058 hasConcept C41008148 @default.
- W2953650058 hasConcept C43617362 @default.
- W2953650058 hasConcept C73555534 @default.
- W2953650058 hasConcept C98045186 @default.
- W2953650058 hasConceptScore W2953650058C108583219 @default.
- W2953650058 hasConceptScore W2953650058C111919701 @default.
- W2953650058 hasConceptScore W2953650058C119857082 @default.
- W2953650058 hasConceptScore W2953650058C12267149 @default.
- W2953650058 hasConceptScore W2953650058C124101348 @default.
- W2953650058 hasConceptScore W2953650058C146849305 @default.
- W2953650058 hasConceptScore W2953650058C153180895 @default.
- W2953650058 hasConceptScore W2953650058C154945302 @default.
- W2953650058 hasConceptScore W2953650058C159078339 @default.
- W2953650058 hasConceptScore W2953650058C185592680 @default.
- W2953650058 hasConceptScore W2953650058C198531522 @default.
- W2953650058 hasConceptScore W2953650058C41008148 @default.
- W2953650058 hasConceptScore W2953650058C43617362 @default.
- W2953650058 hasConceptScore W2953650058C73555534 @default.
- W2953650058 hasConceptScore W2953650058C98045186 @default.
- W2953650058 hasIssue "9" @default.
- W2953650058 hasLocation W29536500581 @default.
- W2953650058 hasOpenAccess W2953650058 @default.
- W2953650058 hasPrimaryLocation W29536500581 @default.
- W2953650058 hasRelatedWork W2051197289 @default.
- W2953650058 hasRelatedWork W2807839383 @default.
- W2953650058 hasRelatedWork W2921350538 @default.
- W2953650058 hasRelatedWork W3173596272 @default.
- W2953650058 hasRelatedWork W4223943233 @default.
- W2953650058 hasRelatedWork W4312200629 @default.
- W2953650058 hasRelatedWork W4312789307 @default.
- W2953650058 hasRelatedWork W4360585206 @default.
- W2953650058 hasRelatedWork W4364306694 @default.
- W2953650058 hasRelatedWork W4380075502 @default.
- W2953650058 hasVolume "12" @default.
- W2953650058 isParatext "false" @default.
- W2953650058 isRetracted "false" @default.
- W2953650058 magId "2953650058" @default.