Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953710871> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2953710871 abstract "The need of advancement in e-learning technology causes educational data to become very huge and increase very rapidly. The data is generated daily as a result of students interaction with e-learning environment, especially learning management systems. The data contain hidden information about the participation of students in various activities of e-learning which when revealed can be used to associate with the students performance. Predicting the performance of students based on the use of e-learning system in educational institutions is a major concern and has become very important for education managements to better understand why so many students perform poorly or even fail in their studies. However, it is difficult to do the prediction due to the diverse factors or characteristics that influence their performance. This dissertation is aimed at predicting students performance by considering the students interaction in e-learning environment, their assessment marks and their prerequisite knowledge as prediction features. Random Forest algorithm, which is an ensemble of decision trees, has been used for prediction and the comparative analysis shows that the algorithm outperforms the popular decision tree and K-Nearest Neighbor algorithms. However, Naive Bayes outperformed Random Forest. In addition to the performance prediction, Random Forest was also used to identify the significant attributes that influence students performance, which was validated by a statistical test using Pearson correlation. The research therefore, revealed that lab task, assignments, midterm and prerequisite knowledge are significant indicators of students performance predictions." @default.
- W2953710871 created "2019-07-12" @default.
- W2953710871 creator A5026901103 @default.
- W2953710871 creator A5041019060 @default.
- W2953710871 date "2017-12-12" @default.
- W2953710871 modified "2023-10-03" @default.
- W2953710871 title "Prediction of students' performance in e-learning environment using random forest" @default.
- W2953710871 cites W167758375 @default.
- W2953710871 cites W1964089535 @default.
- W2953710871 cites W2100805904 @default.
- W2953710871 cites W2171562468 @default.
- W2953710871 cites W2244141820 @default.
- W2953710871 cites W2507965868 @default.
- W2953710871 doi "https://doi.org/10.11113/ijic.v7n2.143" @default.
- W2953710871 hasPublicationYear "2017" @default.
- W2953710871 type Work @default.
- W2953710871 sameAs 2953710871 @default.
- W2953710871 citedByCount "3" @default.
- W2953710871 countsByYear W29537108712020 @default.
- W2953710871 countsByYear W29537108712021 @default.
- W2953710871 countsByYear W29537108712023 @default.
- W2953710871 crossrefType "journal-article" @default.
- W2953710871 hasAuthorship W2953710871A5026901103 @default.
- W2953710871 hasAuthorship W2953710871A5041019060 @default.
- W2953710871 hasConcept C113174947 @default.
- W2953710871 hasConcept C113238511 @default.
- W2953710871 hasConcept C119857082 @default.
- W2953710871 hasConcept C12267149 @default.
- W2953710871 hasConcept C127413603 @default.
- W2953710871 hasConcept C134306372 @default.
- W2953710871 hasConcept C154945302 @default.
- W2953710871 hasConcept C169258074 @default.
- W2953710871 hasConcept C201995342 @default.
- W2953710871 hasConcept C2780451532 @default.
- W2953710871 hasConcept C33923547 @default.
- W2953710871 hasConcept C41008148 @default.
- W2953710871 hasConcept C45942800 @default.
- W2953710871 hasConcept C52001869 @default.
- W2953710871 hasConcept C84525736 @default.
- W2953710871 hasConceptScore W2953710871C113174947 @default.
- W2953710871 hasConceptScore W2953710871C113238511 @default.
- W2953710871 hasConceptScore W2953710871C119857082 @default.
- W2953710871 hasConceptScore W2953710871C12267149 @default.
- W2953710871 hasConceptScore W2953710871C127413603 @default.
- W2953710871 hasConceptScore W2953710871C134306372 @default.
- W2953710871 hasConceptScore W2953710871C154945302 @default.
- W2953710871 hasConceptScore W2953710871C169258074 @default.
- W2953710871 hasConceptScore W2953710871C201995342 @default.
- W2953710871 hasConceptScore W2953710871C2780451532 @default.
- W2953710871 hasConceptScore W2953710871C33923547 @default.
- W2953710871 hasConceptScore W2953710871C41008148 @default.
- W2953710871 hasConceptScore W2953710871C45942800 @default.
- W2953710871 hasConceptScore W2953710871C52001869 @default.
- W2953710871 hasConceptScore W2953710871C84525736 @default.
- W2953710871 hasIssue "2" @default.
- W2953710871 hasLocation W29537108711 @default.
- W2953710871 hasOpenAccess W2953710871 @default.
- W2953710871 hasPrimaryLocation W29537108711 @default.
- W2953710871 hasRelatedWork W2264138524 @default.
- W2953710871 hasRelatedWork W2742149432 @default.
- W2953710871 hasRelatedWork W2894531285 @default.
- W2953710871 hasRelatedWork W2944350665 @default.
- W2953710871 hasRelatedWork W2945590597 @default.
- W2953710871 hasRelatedWork W2979629481 @default.
- W2953710871 hasRelatedWork W2995866337 @default.
- W2953710871 hasRelatedWork W3012160808 @default.
- W2953710871 hasRelatedWork W3023231610 @default.
- W2953710871 hasRelatedWork W3023981672 @default.
- W2953710871 hasRelatedWork W3045232301 @default.
- W2953710871 hasRelatedWork W3090741237 @default.
- W2953710871 hasRelatedWork W3113225211 @default.
- W2953710871 hasRelatedWork W3119451189 @default.
- W2953710871 hasRelatedWork W3196875233 @default.
- W2953710871 hasRelatedWork W3200435065 @default.
- W2953710871 hasRelatedWork W3207536055 @default.
- W2953710871 hasRelatedWork W3209670745 @default.
- W2953710871 hasRelatedWork W3210381978 @default.
- W2953710871 hasRelatedWork W2379561341 @default.
- W2953710871 hasVolume "7" @default.
- W2953710871 isParatext "false" @default.
- W2953710871 isRetracted "false" @default.
- W2953710871 magId "2953710871" @default.
- W2953710871 workType "article" @default.