Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953726610> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2953726610 abstract "Unveiling low-dimensional latent structure by means of multilinear decompositions of tensor data is central to data analytics tasks at the confluence of signal processing, machine learning and data mining. However, increasingly noisy, incomplete, and heterogeneous datasets (that deviate from e.g., Gaussian distributional assumptions) as well as the need for real-time processing of streaming data pose major challenges to this end. In this context, the present paper develops a novel online (adaptive) algorithm to obtain three-way decompositions of low-rank, Poisson-distributed tensors. Such (possibly incomplete) streams of count data arise with various applications including traffic engineering, computer network monitoring, genomics, photonics and satellite imaging. The proposed estimator minimizes a Poisson log-likelihood cost along with a separable regularizer of the PARAFAC decomposition factors, to trade-off fidelity for complexity of the approximation captured by the decomposition’s rank. Leveraging stochastic gradient descent iterations, a scalable, online algorithm is developed to learn the decomposition factors on-the-fly and perform data imputation as a byproduct. Preliminary numerical tests with simulated data and solar flare video confirm the efficacy of the proposed tensor imputation algorithm, as well as its convergence to the batch estimator benchmark." @default.
- W2953726610 created "2019-07-12" @default.
- W2953726610 creator A5006078163 @default.
- W2953726610 creator A5076084047 @default.
- W2953726610 date "2019-06-01" @default.
- W2953726610 modified "2023-09-28" @default.
- W2953726610 title "Online Tensor Decomposition and Imputation for Count Data" @default.
- W2953726610 cites W1532323952 @default.
- W2953726610 cites W1814521481 @default.
- W2953726610 cites W1975189025 @default.
- W2953726610 cites W2037360998 @default.
- W2953726610 cites W2038869097 @default.
- W2953726610 cites W2047071281 @default.
- W2953726610 cites W2051245758 @default.
- W2953726610 cites W2075406189 @default.
- W2953726610 cites W2082600181 @default.
- W2953726610 cites W2096642693 @default.
- W2953726610 cites W2098171862 @default.
- W2953726610 cites W2112447569 @default.
- W2953726610 cites W2119412403 @default.
- W2953726610 cites W2122090912 @default.
- W2953726610 cites W2133515443 @default.
- W2953726610 cites W2140738143 @default.
- W2953726610 cites W2154992274 @default.
- W2953726610 cites W2167167503 @default.
- W2953726610 cites W2469230926 @default.
- W2953726610 cites W2525885261 @default.
- W2953726610 cites W2772322204 @default.
- W2953726610 cites W2964044134 @default.
- W2953726610 doi "https://doi.org/10.1109/dsw.2019.8755772" @default.
- W2953726610 hasPublicationYear "2019" @default.
- W2953726610 type Work @default.
- W2953726610 sameAs 2953726610 @default.
- W2953726610 citedByCount "2" @default.
- W2953726610 countsByYear W29537266102021 @default.
- W2953726610 crossrefType "proceedings-article" @default.
- W2953726610 hasAuthorship W2953726610A5006078163 @default.
- W2953726610 hasAuthorship W2953726610A5076084047 @default.
- W2953726610 hasConcept C100906024 @default.
- W2953726610 hasConcept C105795698 @default.
- W2953726610 hasConcept C11413529 @default.
- W2953726610 hasConcept C119857082 @default.
- W2953726610 hasConcept C124101348 @default.
- W2953726610 hasConcept C154945302 @default.
- W2953726610 hasConcept C185429906 @default.
- W2953726610 hasConcept C206688291 @default.
- W2953726610 hasConcept C33643355 @default.
- W2953726610 hasConcept C33923547 @default.
- W2953726610 hasConcept C41008148 @default.
- W2953726610 hasConcept C50644808 @default.
- W2953726610 hasConcept C58041806 @default.
- W2953726610 hasConcept C9357733 @default.
- W2953726610 hasConceptScore W2953726610C100906024 @default.
- W2953726610 hasConceptScore W2953726610C105795698 @default.
- W2953726610 hasConceptScore W2953726610C11413529 @default.
- W2953726610 hasConceptScore W2953726610C119857082 @default.
- W2953726610 hasConceptScore W2953726610C124101348 @default.
- W2953726610 hasConceptScore W2953726610C154945302 @default.
- W2953726610 hasConceptScore W2953726610C185429906 @default.
- W2953726610 hasConceptScore W2953726610C206688291 @default.
- W2953726610 hasConceptScore W2953726610C33643355 @default.
- W2953726610 hasConceptScore W2953726610C33923547 @default.
- W2953726610 hasConceptScore W2953726610C41008148 @default.
- W2953726610 hasConceptScore W2953726610C50644808 @default.
- W2953726610 hasConceptScore W2953726610C58041806 @default.
- W2953726610 hasConceptScore W2953726610C9357733 @default.
- W2953726610 hasLocation W29537266101 @default.
- W2953726610 hasOpenAccess W2953726610 @default.
- W2953726610 hasPrimaryLocation W29537266101 @default.
- W2953726610 hasRelatedWork W1859869415 @default.
- W2953726610 hasRelatedWork W2051056351 @default.
- W2953726610 hasRelatedWork W2167167503 @default.
- W2953726610 hasRelatedWork W2403228779 @default.
- W2953726610 hasRelatedWork W2762874775 @default.
- W2953726610 hasRelatedWork W2776749365 @default.
- W2953726610 hasRelatedWork W2795272597 @default.
- W2953726610 hasRelatedWork W2810325916 @default.
- W2953726610 hasRelatedWork W2883816343 @default.
- W2953726610 hasRelatedWork W2902776372 @default.
- W2953726610 hasRelatedWork W2949971160 @default.
- W2953726610 hasRelatedWork W2950536256 @default.
- W2953726610 hasRelatedWork W2952322822 @default.
- W2953726610 hasRelatedWork W3021971540 @default.
- W2953726610 hasRelatedWork W3087642357 @default.
- W2953726610 hasRelatedWork W3089690971 @default.
- W2953726610 hasRelatedWork W3166291381 @default.
- W2953726610 hasRelatedWork W3185047647 @default.
- W2953726610 hasRelatedWork W3186573842 @default.
- W2953726610 hasRelatedWork W2116349183 @default.
- W2953726610 isParatext "false" @default.
- W2953726610 isRetracted "false" @default.
- W2953726610 magId "2953726610" @default.
- W2953726610 workType "article" @default.