Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953826923> ?p ?o ?g. }
- W2953826923 abstract "Graphs have been proved to be a useful mathematical representation for a broad variety of real-world complex systems, and the structure prediction on graphs refers to estimating the potential relationship between the objects from the observed structures, being fundamental in many data analysis applications, such as network alignment, network reconstruction, and link prediction. Accordingly, in data publishing, it is necessary to regulate the structural predictability of graphs against inference attack to protect the sensitive information of the data generators. In contrast to the existing works about graph structure perturbation for node ranking, information diffusion, and so on, the structural predictability optimization problem, i.e., reducing the accuracy of sensitive relationships inference in graphs, has not been extensively studied. This paper presents an active learning algorithm that selects the most representative links to be perturbed, thus regulating the structural predictability of graphs, that is, removing as few as possible links to undermine the regularity level of graphs, which forms the foundation of inference attack methods. Specifically, with the assumption that the substructure with higher regularity level contains more regular equivalence components and has more equivalent paths supplied for the random walk processes, random walk-based link importance measuring algorithm is proposed to identify the representative links. The structural regularity metric, measuring the structural predictability of graphs, is also introduced to guide the link perturbation for structural predictability optimization. The extensive experiments on artificial and real-world data sets demonstrate the effectiveness of the proposed structural predictability optimization method. Specifically, the method can learn the role of links accurately in term of graph organization, and the performance of structure inference on graphs can be deteriorated effectively by representative link-based perturbation." @default.
- W2953826923 created "2019-07-12" @default.
- W2953826923 creator A5022355568 @default.
- W2953826923 creator A5027472200 @default.
- W2953826923 creator A5064794016 @default.
- W2953826923 creator A5069415136 @default.
- W2953826923 creator A5074090518 @default.
- W2953826923 creator A5080675208 @default.
- W2953826923 date "2019-01-01" @default.
- W2953826923 modified "2023-10-12" @default.
- W2953826923 title "Structural Predictability Optimization Against Inference Attacks in Data Publishing" @default.
- W2953826923 cites W101755722 @default.
- W2953826923 cites W1480121657 @default.
- W2953826923 cites W1484084878 @default.
- W2953826923 cites W1498410333 @default.
- W2953826923 cites W1528361845 @default.
- W2953826923 cites W1544573083 @default.
- W2953826923 cites W1549249733 @default.
- W2953826923 cites W1595449516 @default.
- W2953826923 cites W1977382765 @default.
- W2953826923 cites W1981739003 @default.
- W2953826923 cites W1994321911 @default.
- W2953826923 cites W1997201895 @default.
- W2953826923 cites W2008989859 @default.
- W2953826923 cites W2012210812 @default.
- W2953826923 cites W2018318414 @default.
- W2953826923 cites W2021969955 @default.
- W2953826923 cites W2022218646 @default.
- W2953826923 cites W2063049279 @default.
- W2953826923 cites W20667085 @default.
- W2953826923 cites W2085761620 @default.
- W2953826923 cites W2086975263 @default.
- W2953826923 cites W2089554624 @default.
- W2953826923 cites W2096509679 @default.
- W2953826923 cites W2104355163 @default.
- W2953826923 cites W2109751703 @default.
- W2953826923 cites W2111588083 @default.
- W2953826923 cites W2113654464 @default.
- W2953826923 cites W2119404697 @default.
- W2953826923 cites W2119998616 @default.
- W2953826923 cites W2133299088 @default.
- W2953826923 cites W2143445293 @default.
- W2953826923 cites W2148443742 @default.
- W2953826923 cites W2153689444 @default.
- W2953826923 cites W2153910905 @default.
- W2953826923 cites W2157082398 @default.
- W2953826923 cites W2170766502 @default.
- W2953826923 cites W2290976976 @default.
- W2953826923 cites W2293238400 @default.
- W2953826923 cites W2329465571 @default.
- W2953826923 cites W2417915283 @default.
- W2953826923 cites W2419507445 @default.
- W2953826923 cites W2465244929 @default.
- W2953826923 cites W2470896761 @default.
- W2953826923 cites W2598689838 @default.
- W2953826923 cites W2608178897 @default.
- W2953826923 cites W2752811112 @default.
- W2953826923 cites W2770147312 @default.
- W2953826923 cites W2778177542 @default.
- W2953826923 cites W2789134258 @default.
- W2953826923 cites W2902914352 @default.
- W2953826923 cites W2903438637 @default.
- W2953826923 cites W2963568110 @default.
- W2953826923 cites W3098684887 @default.
- W2953826923 cites W3100069540 @default.
- W2953826923 cites W68836975 @default.
- W2953826923 doi "https://doi.org/10.1109/access.2019.2927002" @default.
- W2953826923 hasPublicationYear "2019" @default.
- W2953826923 type Work @default.
- W2953826923 sameAs 2953826923 @default.
- W2953826923 citedByCount "6" @default.
- W2953826923 countsByYear W29538269232020 @default.
- W2953826923 countsByYear W29538269232021 @default.
- W2953826923 countsByYear W29538269232022 @default.
- W2953826923 crossrefType "journal-article" @default.
- W2953826923 hasAuthorship W2953826923A5022355568 @default.
- W2953826923 hasAuthorship W2953826923A5027472200 @default.
- W2953826923 hasAuthorship W2953826923A5064794016 @default.
- W2953826923 hasAuthorship W2953826923A5069415136 @default.
- W2953826923 hasAuthorship W2953826923A5074090518 @default.
- W2953826923 hasAuthorship W2953826923A5080675208 @default.
- W2953826923 hasBestOaLocation W29538269231 @default.
- W2953826923 hasConcept C105795698 @default.
- W2953826923 hasConcept C11413529 @default.
- W2953826923 hasConcept C124101348 @default.
- W2953826923 hasConcept C151719136 @default.
- W2953826923 hasConcept C154945302 @default.
- W2953826923 hasConcept C17744445 @default.
- W2953826923 hasConcept C197640229 @default.
- W2953826923 hasConcept C199539241 @default.
- W2953826923 hasConcept C2776214188 @default.
- W2953826923 hasConcept C2781396290 @default.
- W2953826923 hasConcept C33923547 @default.
- W2953826923 hasConcept C41008148 @default.
- W2953826923 hasConcept C80444323 @default.
- W2953826923 hasConceptScore W2953826923C105795698 @default.
- W2953826923 hasConceptScore W2953826923C11413529 @default.
- W2953826923 hasConceptScore W2953826923C124101348 @default.
- W2953826923 hasConceptScore W2953826923C151719136 @default.
- W2953826923 hasConceptScore W2953826923C154945302 @default.