Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953885880> ?p ?o ?g. }
- W2953885880 endingPage "3017" @default.
- W2953885880 startingPage "3010" @default.
- W2953885880 abstract "Abstract Based on a developed scheme we show how to deal with the centrifugal term and the Coulombic behavior part and then to solve the Klein-Gordon (KG) equation for the linear combination of Hulthen and Yukawa potentials. Two cases, i.e., the scalar potential which is equal and unequal to vector potential, are considered for arbitrary l state. With the aid of the Nikiforov-Uvarov (NU) method and the traditional approach, we present the eigenvalues and the corresponding radial wave functions expressed by the Jacobi polynomials or hypergeometric functions and find that the results obtained by them are consistent. For given values of potential parameters V 0 , V 0 ′ , S 0 , S 0 ′ and M = 1 , we notice that the energy levels E are sensitively relevant for the potential parameter δ and the energy levels E increase for δ > 0.1 as quantum numbers n r and l increase. However, for δ ∈ ( 0 , 0.1 ) the energy levels E do not always increase with the quantum numbers n r and l. We find that the energy levels E are inversely proportional to quantum numbers n r and l when δ ∈ ( 0 , 0.05 ) ." @default.
- W2953885880 created "2019-07-12" @default.
- W2953885880 creator A5019426116 @default.
- W2953885880 creator A5048684131 @default.
- W2953885880 creator A5058062006 @default.
- W2953885880 creator A5072275467 @default.
- W2953885880 creator A5074303442 @default.
- W2953885880 date "2019-08-01" @default.
- W2953885880 modified "2023-10-01" @default.
- W2953885880 title "Approximate bound state solutions of the Klein-Gordon equation with the linear combination of Hulthén and Yukawa potentials" @default.
- W2953885880 cites W1980903947 @default.
- W2953885880 cites W1988110798 @default.
- W2953885880 cites W1989561581 @default.
- W2953885880 cites W1989821903 @default.
- W2953885880 cites W1995088130 @default.
- W2953885880 cites W2004947055 @default.
- W2953885880 cites W2005494408 @default.
- W2953885880 cites W2006073456 @default.
- W2953885880 cites W2015579676 @default.
- W2953885880 cites W2015951554 @default.
- W2953885880 cites W2016104589 @default.
- W2953885880 cites W2016508751 @default.
- W2953885880 cites W2018444140 @default.
- W2953885880 cites W2027781927 @default.
- W2953885880 cites W2032411409 @default.
- W2953885880 cites W2036299009 @default.
- W2953885880 cites W2040367811 @default.
- W2953885880 cites W2042615197 @default.
- W2953885880 cites W2044116169 @default.
- W2953885880 cites W2054462693 @default.
- W2953885880 cites W2056617119 @default.
- W2953885880 cites W2057739141 @default.
- W2953885880 cites W2058020881 @default.
- W2953885880 cites W2061299302 @default.
- W2953885880 cites W2070347300 @default.
- W2953885880 cites W2070754757 @default.
- W2953885880 cites W2074123292 @default.
- W2953885880 cites W2081719442 @default.
- W2953885880 cites W2088106104 @default.
- W2953885880 cites W2089445570 @default.
- W2953885880 cites W2090836153 @default.
- W2953885880 cites W2091300528 @default.
- W2953885880 cites W2092201012 @default.
- W2953885880 cites W2094277095 @default.
- W2953885880 cites W2099512807 @default.
- W2953885880 cites W2102245148 @default.
- W2953885880 cites W2102948168 @default.
- W2953885880 cites W2117896184 @default.
- W2953885880 cites W2149576890 @default.
- W2953885880 cites W2169303379 @default.
- W2953885880 cites W2328368598 @default.
- W2953885880 cites W2594900600 @default.
- W2953885880 cites W2611341555 @default.
- W2953885880 cites W2617107752 @default.
- W2953885880 cites W2888350072 @default.
- W2953885880 cites W2964181182 @default.
- W2953885880 cites W2964262603 @default.
- W2953885880 cites W3098236604 @default.
- W2953885880 cites W3098913028 @default.
- W2953885880 cites W3103570105 @default.
- W2953885880 cites W3175308499 @default.
- W2953885880 doi "https://doi.org/10.1016/j.physleta.2019.06.043" @default.
- W2953885880 hasPublicationYear "2019" @default.
- W2953885880 type Work @default.
- W2953885880 sameAs 2953885880 @default.
- W2953885880 citedByCount "44" @default.
- W2953885880 countsByYear W29538858802019 @default.
- W2953885880 countsByYear W29538858802020 @default.
- W2953885880 countsByYear W29538858802021 @default.
- W2953885880 countsByYear W29538858802022 @default.
- W2953885880 countsByYear W29538858802023 @default.
- W2953885880 crossrefType "journal-article" @default.
- W2953885880 hasAuthorship W2953885880A5019426116 @default.
- W2953885880 hasAuthorship W2953885880A5048684131 @default.
- W2953885880 hasAuthorship W2953885880A5058062006 @default.
- W2953885880 hasAuthorship W2953885880A5072275467 @default.
- W2953885880 hasAuthorship W2953885880A5074303442 @default.
- W2953885880 hasConcept C101682238 @default.
- W2953885880 hasConcept C11413529 @default.
- W2953885880 hasConcept C121332964 @default.
- W2953885880 hasConcept C151195881 @default.
- W2953885880 hasConcept C158622935 @default.
- W2953885880 hasConcept C174084160 @default.
- W2953885880 hasConcept C3079626 @default.
- W2953885880 hasConcept C37914503 @default.
- W2953885880 hasConcept C41008148 @default.
- W2953885880 hasConcept C48103436 @default.
- W2953885880 hasConcept C62520636 @default.
- W2953885880 hasConcept C74650414 @default.
- W2953885880 hasConceptScore W2953885880C101682238 @default.
- W2953885880 hasConceptScore W2953885880C11413529 @default.
- W2953885880 hasConceptScore W2953885880C121332964 @default.
- W2953885880 hasConceptScore W2953885880C151195881 @default.
- W2953885880 hasConceptScore W2953885880C158622935 @default.
- W2953885880 hasConceptScore W2953885880C174084160 @default.
- W2953885880 hasConceptScore W2953885880C3079626 @default.
- W2953885880 hasConceptScore W2953885880C37914503 @default.
- W2953885880 hasConceptScore W2953885880C41008148 @default.