Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953908093> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2953908093 endingPage "20" @default.
- W2953908093 startingPage "11" @default.
- W2953908093 abstract "Increasing availability and popularity of 3D printers cause growing interest in monitoring of additive manufacturing processes as well as quality assessment and classification of 3D printed objects. For this purpose various methods can be used, in some cases dependent on the type of filament, including X-ray tomography and ultrasonic imaging as well as electromagnetic methods e.g. terahertz non-destructive testing. Nevertheless, in many typical low cost solutions, utilising Fused Deposition Modelling (FDM) based technology, the practical application of such methods can be troublesome. Therefore, on-line quality assessment of the 3D printed surfaces using image analysis methods seems to be a good alternative, allowing to detect the quality decrease and stop the printing process or correct the surface in case of minor distortions to save time, energy and material. From aesthetic point of view quality assessment results may be correlated with human perception of surface quality, whereas, considering the physical issues, the presence of some surface distortions may indicate poor mechanical properties of the 3D printed object. The challenging problem of a reliable quality assessment of the 3D printed surfaces and appropriate classification of the manufactured samples can be solved using various computer vision approaches. Interesting results can be obtained assuming the appropriate location of the camera and analysis of the side view of the printed object where the linear patterns representing consecutive layers of the filament can be easily observed, especially for flat surfaces. Some exemplary experimental results of the application of texture analysis with the use of GLCM and Haralick features, Hough transform, similarity based image quality metrics, Fourier analysis and entropy are presented." @default.
- W2953908093 created "2019-07-12" @default.
- W2953908093 creator A5006059367 @default.
- W2953908093 creator A5075075434 @default.
- W2953908093 date "2019-05-08" @default.
- W2953908093 modified "2023-10-16" @default.
- W2953908093 title "Computer Vision Methods for Non-destructive Quality Assessment in Additive Manufacturing" @default.
- W2953908093 cites W1522949081 @default.
- W2953908093 cites W2015510004 @default.
- W2953908093 cites W2023020092 @default.
- W2953908093 cites W2040732657 @default.
- W2953908093 cites W2063680016 @default.
- W2953908093 cites W2106136696 @default.
- W2953908093 cites W2112565951 @default.
- W2953908093 cites W2114603952 @default.
- W2953908093 cites W2336877181 @default.
- W2953908093 cites W2514421211 @default.
- W2953908093 cites W2517514681 @default.
- W2953908093 cites W2524306598 @default.
- W2953908093 cites W2536201449 @default.
- W2953908093 cites W2543418449 @default.
- W2953908093 cites W2611040916 @default.
- W2953908093 cites W2748935316 @default.
- W2953908093 cites W2758885635 @default.
- W2953908093 cites W2760635452 @default.
- W2953908093 cites W2769988472 @default.
- W2953908093 cites W2793278667 @default.
- W2953908093 cites W2809282016 @default.
- W2953908093 cites W2891294009 @default.
- W2953908093 cites W2898694247 @default.
- W2953908093 cites W2907912969 @default.
- W2953908093 cites W2911221784 @default.
- W2953908093 doi "https://doi.org/10.1007/978-3-030-19738-4_2" @default.
- W2953908093 hasPublicationYear "2019" @default.
- W2953908093 type Work @default.
- W2953908093 sameAs 2953908093 @default.
- W2953908093 citedByCount "9" @default.
- W2953908093 countsByYear W29539080932020 @default.
- W2953908093 countsByYear W29539080932021 @default.
- W2953908093 countsByYear W29539080932022 @default.
- W2953908093 countsByYear W29539080932023 @default.
- W2953908093 crossrefType "book-chapter" @default.
- W2953908093 hasAuthorship W2953908093A5006059367 @default.
- W2953908093 hasAuthorship W2953908093A5075075434 @default.
- W2953908093 hasConcept C111472728 @default.
- W2953908093 hasConcept C117671659 @default.
- W2953908093 hasConcept C127413603 @default.
- W2953908093 hasConcept C138885662 @default.
- W2953908093 hasConcept C199639397 @default.
- W2953908093 hasConcept C2779530757 @default.
- W2953908093 hasConcept C31972630 @default.
- W2953908093 hasConcept C41008148 @default.
- W2953908093 hasConceptScore W2953908093C111472728 @default.
- W2953908093 hasConceptScore W2953908093C117671659 @default.
- W2953908093 hasConceptScore W2953908093C127413603 @default.
- W2953908093 hasConceptScore W2953908093C138885662 @default.
- W2953908093 hasConceptScore W2953908093C199639397 @default.
- W2953908093 hasConceptScore W2953908093C2779530757 @default.
- W2953908093 hasConceptScore W2953908093C31972630 @default.
- W2953908093 hasConceptScore W2953908093C41008148 @default.
- W2953908093 hasLocation W29539080931 @default.
- W2953908093 hasOpenAccess W2953908093 @default.
- W2953908093 hasPrimaryLocation W29539080931 @default.
- W2953908093 hasRelatedWork W2027421754 @default.
- W2953908093 hasRelatedWork W2116911522 @default.
- W2953908093 hasRelatedWork W2366435204 @default.
- W2953908093 hasRelatedWork W2385299846 @default.
- W2953908093 hasRelatedWork W2541298389 @default.
- W2953908093 hasRelatedWork W2809146406 @default.
- W2953908093 hasRelatedWork W4211203515 @default.
- W2953908093 hasRelatedWork W4291639772 @default.
- W2953908093 hasRelatedWork W2090479428 @default.
- W2953908093 hasRelatedWork W2189614512 @default.
- W2953908093 isParatext "false" @default.
- W2953908093 isRetracted "false" @default.
- W2953908093 magId "2953908093" @default.
- W2953908093 workType "book-chapter" @default.