Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953975365> ?p ?o ?g. }
- W2953975365 endingPage "568" @default.
- W2953975365 startingPage "550" @default.
- W2953975365 abstract "The purpose of the current research is to develop a methodology that can analyse online reviews using machine learning techniques in such a way that practitioners in the fields of tourism and destination management can understand and apply the technique to improve their attractions. This research studies the TripAdvisor reviews of tourist attractions, including beaches, islands, temples, a pedestrian street, and markets in Phuket, Thailand. In total, 65,079 online reviews were analysed using two machine learning techniques: latent Dirichlet allocation (LDA) and naïve Bayes modelling. LDA modelling helps the researchers determine the dimensions of each type of attraction. Four dimensions were specified for beaches and islands, three dimensions for a pedestrian street and temples, and two dimensions for markets. This research also developed two practical tools – dimensional salience-valence analysis (DSVA) and lexical salience-valence analysis (LSVA) – and used them to suggest actions for the Tourism Authority of Thailand (TAT)." @default.
- W2953975365 created "2019-07-12" @default.
- W2953975365 creator A5029066014 @default.
- W2953975365 creator A5054011474 @default.
- W2953975365 date "2019-12-01" @default.
- W2953975365 modified "2023-10-14" @default.
- W2953975365 title "Analysing TripAdvisor reviews of tourist attractions in Phuket, Thailand" @default.
- W2953975365 cites W1130813113 @default.
- W2953975365 cites W1815909728 @default.
- W2953975365 cites W1878374081 @default.
- W2953975365 cites W1885495643 @default.
- W2953975365 cites W1902448106 @default.
- W2953975365 cites W1975158701 @default.
- W2953975365 cites W1982425106 @default.
- W2953975365 cites W1993879187 @default.
- W2953975365 cites W1995796450 @default.
- W2953975365 cites W2001569578 @default.
- W2953975365 cites W2006622333 @default.
- W2953975365 cites W2011205802 @default.
- W2953975365 cites W2025670841 @default.
- W2953975365 cites W2025708478 @default.
- W2953975365 cites W2030387474 @default.
- W2953975365 cites W2037452669 @default.
- W2953975365 cites W2040882218 @default.
- W2953975365 cites W2044905471 @default.
- W2953975365 cites W2072566632 @default.
- W2953975365 cites W2074353574 @default.
- W2953975365 cites W2078199313 @default.
- W2953975365 cites W2096472197 @default.
- W2953975365 cites W2096707493 @default.
- W2953975365 cites W2098162425 @default.
- W2953975365 cites W2101937718 @default.
- W2953975365 cites W2103556024 @default.
- W2953975365 cites W2114011738 @default.
- W2953975365 cites W2127448197 @default.
- W2953975365 cites W2132314509 @default.
- W2953975365 cites W2145264991 @default.
- W2953975365 cites W2157279122 @default.
- W2953975365 cites W2172667927 @default.
- W2953975365 cites W2256938843 @default.
- W2953975365 cites W2511868947 @default.
- W2953975365 cites W2520828129 @default.
- W2953975365 cites W2529920793 @default.
- W2953975365 cites W2539161094 @default.
- W2953975365 cites W2556680278 @default.
- W2953975365 cites W2583503161 @default.
- W2953975365 cites W2596300364 @default.
- W2953975365 cites W2600590140 @default.
- W2953975365 cites W2602226862 @default.
- W2953975365 cites W2605627426 @default.
- W2953975365 cites W2734507185 @default.
- W2953975365 cites W2768505907 @default.
- W2953975365 cites W2769392727 @default.
- W2953975365 cites W2781696751 @default.
- W2953975365 cites W2794185726 @default.
- W2953975365 cites W2794410847 @default.
- W2953975365 cites W2809558740 @default.
- W2953975365 cites W2891017775 @default.
- W2953975365 cites W2893929634 @default.
- W2953975365 cites W2898743770 @default.
- W2953975365 cites W2899547726 @default.
- W2953975365 cites W2899986939 @default.
- W2953975365 cites W2908649179 @default.
- W2953975365 doi "https://doi.org/10.1016/j.tourman.2019.06.020" @default.
- W2953975365 hasPublicationYear "2019" @default.
- W2953975365 type Work @default.
- W2953975365 sameAs 2953975365 @default.
- W2953975365 citedByCount "165" @default.
- W2953975365 countsByYear W29539753652020 @default.
- W2953975365 countsByYear W29539753652021 @default.
- W2953975365 countsByYear W29539753652022 @default.
- W2953975365 countsByYear W29539753652023 @default.
- W2953975365 crossrefType "journal-article" @default.
- W2953975365 hasAuthorship W2953975365A5029066014 @default.
- W2953975365 hasAuthorship W2953975365A5054011474 @default.
- W2953975365 hasConcept C107482638 @default.
- W2953975365 hasConcept C108154423 @default.
- W2953975365 hasConcept C112698675 @default.
- W2953975365 hasConcept C144133560 @default.
- W2953975365 hasConcept C154945302 @default.
- W2953975365 hasConcept C162853370 @default.
- W2953975365 hasConcept C166957645 @default.
- W2953975365 hasConcept C171686336 @default.
- W2953975365 hasConcept C18918823 @default.
- W2953975365 hasConcept C205649164 @default.
- W2953975365 hasConcept C41008148 @default.
- W2953975365 hasConcept C500882744 @default.
- W2953975365 hasConceptScore W2953975365C107482638 @default.
- W2953975365 hasConceptScore W2953975365C108154423 @default.
- W2953975365 hasConceptScore W2953975365C112698675 @default.
- W2953975365 hasConceptScore W2953975365C144133560 @default.
- W2953975365 hasConceptScore W2953975365C154945302 @default.
- W2953975365 hasConceptScore W2953975365C162853370 @default.
- W2953975365 hasConceptScore W2953975365C166957645 @default.
- W2953975365 hasConceptScore W2953975365C171686336 @default.
- W2953975365 hasConceptScore W2953975365C18918823 @default.
- W2953975365 hasConceptScore W2953975365C205649164 @default.
- W2953975365 hasConceptScore W2953975365C41008148 @default.