Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953989710> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2953989710 endingPage "1068" @default.
- W2953989710 startingPage "1057" @default.
- W2953989710 abstract "Automated text classification is a supervised learning task which uses labeled training set of documents to assign a category label to a new document based on a model generated by a classifier. The training set and test set documents needs to be preprocessed to reduce the influence of non-content words on the model derived from the training set. In this paper it is attempted to address the influence of non-content words on the classifier performance. After preprocessing the documents are represented in a machine understandable format i.e. vector space model. The terms in the document are weighted using various measures such as Term Frequency-Inverse Document Frequency (TF-IDF ), Residual IDF (RIDF), x I metric, Odds Ratio (OR(t)), Information Gain (IG(t)) Chi-squared (χ2 (t, c)) and Mutual Information (MI(t)). It is also addressed the influence of different term weighting measures on text classification in news documents. The classification model can be generated using the vector space representation of training documents set with various classifiers. In this paper an attempt is made for classification model generation using the classifiers such as Naive Bayes classifier (NB), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM). The performance of the models generated using these classifiers are measured with precision, recall, F1 and macro F1 measures with various possible combinations of term weighting measures and with functional words." @default.
- W2953989710 created "2019-07-12" @default.
- W2953989710 creator A5015498776 @default.
- W2953989710 date "2014-05-28" @default.
- W2953989710 modified "2023-09-23" @default.
- W2953989710 title "Influence of functional words, term weighting measures and classifiers on Text classification" @default.
- W2953989710 cites W1549887922 @default.
- W2953989710 cites W1978394996 @default.
- W2953989710 cites W1982442952 @default.
- W2953989710 cites W2103333826 @default.
- W2953989710 cites W2114535528 @default.
- W2953989710 cites W2119821739 @default.
- W2953989710 cites W2149684865 @default.
- W2953989710 cites W2155529673 @default.
- W2953989710 cites W2165612380 @default.
- W2953989710 hasPublicationYear "2014" @default.
- W2953989710 type Work @default.
- W2953989710 sameAs 2953989710 @default.
- W2953989710 citedByCount "0" @default.
- W2953989710 crossrefType "journal-article" @default.
- W2953989710 hasAuthorship W2953989710A5015498776 @default.
- W2953989710 hasConcept C119857082 @default.
- W2953989710 hasConcept C121332964 @default.
- W2953989710 hasConcept C12267149 @default.
- W2953989710 hasConcept C126838900 @default.
- W2953989710 hasConcept C153180895 @default.
- W2953989710 hasConcept C154945302 @default.
- W2953989710 hasConcept C183115368 @default.
- W2953989710 hasConcept C34736171 @default.
- W2953989710 hasConcept C41008148 @default.
- W2953989710 hasConcept C52001869 @default.
- W2953989710 hasConcept C61797465 @default.
- W2953989710 hasConcept C62520636 @default.
- W2953989710 hasConcept C71924100 @default.
- W2953989710 hasConcept C81758059 @default.
- W2953989710 hasConcept C89686163 @default.
- W2953989710 hasConcept C95623464 @default.
- W2953989710 hasConceptScore W2953989710C119857082 @default.
- W2953989710 hasConceptScore W2953989710C121332964 @default.
- W2953989710 hasConceptScore W2953989710C12267149 @default.
- W2953989710 hasConceptScore W2953989710C126838900 @default.
- W2953989710 hasConceptScore W2953989710C153180895 @default.
- W2953989710 hasConceptScore W2953989710C154945302 @default.
- W2953989710 hasConceptScore W2953989710C183115368 @default.
- W2953989710 hasConceptScore W2953989710C34736171 @default.
- W2953989710 hasConceptScore W2953989710C41008148 @default.
- W2953989710 hasConceptScore W2953989710C52001869 @default.
- W2953989710 hasConceptScore W2953989710C61797465 @default.
- W2953989710 hasConceptScore W2953989710C62520636 @default.
- W2953989710 hasConceptScore W2953989710C71924100 @default.
- W2953989710 hasConceptScore W2953989710C81758059 @default.
- W2953989710 hasConceptScore W2953989710C89686163 @default.
- W2953989710 hasConceptScore W2953989710C95623464 @default.
- W2953989710 hasIssue "4" @default.
- W2953989710 hasLocation W29539897101 @default.
- W2953989710 hasOpenAccess W2953989710 @default.
- W2953989710 hasPrimaryLocation W29539897101 @default.
- W2953989710 hasRelatedWork W1534466353 @default.
- W2953989710 hasRelatedWork W2009822433 @default.
- W2953989710 hasRelatedWork W2044281281 @default.
- W2953989710 hasRelatedWork W2105948726 @default.
- W2953989710 hasRelatedWork W2129910523 @default.
- W2953989710 hasRelatedWork W2132201804 @default.
- W2953989710 hasRelatedWork W2145803112 @default.
- W2953989710 hasRelatedWork W2170511976 @default.
- W2953989710 hasRelatedWork W2277583061 @default.
- W2953989710 hasRelatedWork W2305666229 @default.
- W2953989710 hasRelatedWork W2381788271 @default.
- W2953989710 hasRelatedWork W2433335550 @default.
- W2953989710 hasRelatedWork W2478248824 @default.
- W2953989710 hasRelatedWork W2552426019 @default.
- W2953989710 hasRelatedWork W2623340684 @default.
- W2953989710 hasRelatedWork W2801134182 @default.
- W2953989710 hasRelatedWork W2922694903 @default.
- W2953989710 hasRelatedWork W2995003403 @default.
- W2953989710 hasRelatedWork W3151233804 @default.
- W2953989710 hasRelatedWork W3184437936 @default.
- W2953989710 hasVolume "1" @default.
- W2953989710 isParatext "false" @default.
- W2953989710 isRetracted "false" @default.
- W2953989710 magId "2953989710" @default.
- W2953989710 workType "article" @default.