Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953992368> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2953992368 abstract "The thesis concentrates on a methodological research on categorical structural optimizationby means of manifold learning. The main difficulty of handling the categorical optimization problems lies in the description of the categorical variables: they are presented in a category and do not have any orders. Thus the treatment of the design space is a key issue. In this thesis, the non-ordinal categorical variables are treated as multi-dimensional discrete variables, thus the dimensionality of corresponding design space becomes high. In order to reduce the dimensionality, the manifold learning techniques are introduced to find the intrinsic dimensionality and map the original design space to a reduced-order space. The mechanisms of both linear and non-linear manifold learning techniques are firstly studied. Then numerical examples are tested to compare the performance of manifold learning techniques mentioned above. It is found that the PCA and MDS can only deal with linear or globally approximately linear cases. Isomap preserves the geodesic distances for non-linear manifold however, its time consuming is the most. LLE preserves the neighbour weights and can yield good results in a short time. KPCA works like a non-linear classifier and we proves why it cannot preserve distances or angles in some cases. Based on the reduced-order representation obtained by Isomap, the graph-based evolutionary crossover and mutation operators are proposed to deal with categorical structural optimization problems, including the design of dome, six-story rigid frame and dame-like structures. The results show that the proposed graph-based evolutionary approach constructed on the reduced-order space performs more efficiently than traditional methods including simplex approach or evolutionary approach without reduced-order space. In chapter 5, the LLE is applied to reduce the data dimensionality and a polynomial interpolation helps to construct the responding surface from lower dimensional representation to original data. Then the continuous search method of moving asymptotes is executed and yields a competitively good but inadmissible solution within only a few of iteration numbers. Then in the second stage, a discrete search strategy is proposed to find out better solutions based on a neighbour search. The ten-bar truss and dome structural design problems are tested to show the validity of the method. In the end, this method is compared to the Simulated Annealing algorithm and Covariance Matrix Adaptation Evolutionary Strategy, showing its better optimization efficiency. In chapter 6, in order to deal with the case in which the categorical design instances are distributed on several manifolds, we propose a k-manifolds learning method based on the Weighted Principal Component Analysis. And the obtained manifolds are integrated in the lower dimensional design space. Then the method introduced in chapter 4 is applied to solve the ten-bar truss, the dome and the dame-like structural design problems." @default.
- W2953992368 created "2019-07-12" @default.
- W2953992368 creator A5035488023 @default.
- W2953992368 date "2019-02-07" @default.
- W2953992368 modified "2023-09-26" @default.
- W2953992368 title "Categorical structural optimization : methods and applications" @default.
- W2953992368 hasPublicationYear "2019" @default.
- W2953992368 type Work @default.
- W2953992368 sameAs 2953992368 @default.
- W2953992368 citedByCount "0" @default.
- W2953992368 crossrefType "dissertation" @default.
- W2953992368 hasAuthorship W2953992368A5035488023 @default.
- W2953992368 hasConcept C111030470 @default.
- W2953992368 hasConcept C119857082 @default.
- W2953992368 hasConcept C126255220 @default.
- W2953992368 hasConcept C127413603 @default.
- W2953992368 hasConcept C151876577 @default.
- W2953992368 hasConcept C153180895 @default.
- W2953992368 hasConcept C154945302 @default.
- W2953992368 hasConcept C165818556 @default.
- W2953992368 hasConcept C2524010 @default.
- W2953992368 hasConcept C2778626561 @default.
- W2953992368 hasConcept C33923547 @default.
- W2953992368 hasConcept C41008148 @default.
- W2953992368 hasConcept C5274069 @default.
- W2953992368 hasConcept C529865628 @default.
- W2953992368 hasConcept C70518039 @default.
- W2953992368 hasConcept C78519656 @default.
- W2953992368 hasConceptScore W2953992368C111030470 @default.
- W2953992368 hasConceptScore W2953992368C119857082 @default.
- W2953992368 hasConceptScore W2953992368C126255220 @default.
- W2953992368 hasConceptScore W2953992368C127413603 @default.
- W2953992368 hasConceptScore W2953992368C151876577 @default.
- W2953992368 hasConceptScore W2953992368C153180895 @default.
- W2953992368 hasConceptScore W2953992368C154945302 @default.
- W2953992368 hasConceptScore W2953992368C165818556 @default.
- W2953992368 hasConceptScore W2953992368C2524010 @default.
- W2953992368 hasConceptScore W2953992368C2778626561 @default.
- W2953992368 hasConceptScore W2953992368C33923547 @default.
- W2953992368 hasConceptScore W2953992368C41008148 @default.
- W2953992368 hasConceptScore W2953992368C5274069 @default.
- W2953992368 hasConceptScore W2953992368C529865628 @default.
- W2953992368 hasConceptScore W2953992368C70518039 @default.
- W2953992368 hasConceptScore W2953992368C78519656 @default.
- W2953992368 hasLocation W29539923681 @default.
- W2953992368 hasOpenAccess W2953992368 @default.
- W2953992368 hasPrimaryLocation W29539923681 @default.
- W2953992368 hasRelatedWork W1508122684 @default.
- W2953992368 hasRelatedWork W1888563960 @default.
- W2953992368 hasRelatedWork W1982804671 @default.
- W2953992368 hasRelatedWork W1990517601 @default.
- W2953992368 hasRelatedWork W2017588182 @default.
- W2953992368 hasRelatedWork W2120553462 @default.
- W2953992368 hasRelatedWork W2128253627 @default.
- W2953992368 hasRelatedWork W2161951361 @default.
- W2953992368 hasRelatedWork W2182744676 @default.
- W2953992368 hasRelatedWork W2208835321 @default.
- W2953992368 hasRelatedWork W2327795403 @default.
- W2953992368 hasRelatedWork W2390304006 @default.
- W2953992368 hasRelatedWork W2736441366 @default.
- W2953992368 hasRelatedWork W2746173003 @default.
- W2953992368 hasRelatedWork W2782335562 @default.
- W2953992368 hasRelatedWork W2945595726 @default.
- W2953992368 hasRelatedWork W3005555627 @default.
- W2953992368 hasRelatedWork W3142899559 @default.
- W2953992368 hasRelatedWork W3205783387 @default.
- W2953992368 hasRelatedWork W2929665337 @default.
- W2953992368 isParatext "false" @default.
- W2953992368 isRetracted "false" @default.
- W2953992368 magId "2953992368" @default.
- W2953992368 workType "dissertation" @default.