Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953997027> ?p ?o ?g. }
- W2953997027 abstract "Medical imaging is crucial in modern clinics to guide the diagnosis and treatment of diseases. Medical image reconstruction is one of the most fundamental and important components of medical imaging, whose major objective is to acquire high-quality medical images for clinical usage at the minimal cost and risk to the patients. Mathematical models in medical image reconstruction or, more generally, image restoration in computer vision, have been playing a prominent role. Earlier mathematical models are mostly designed by human knowledge or hypothesis on the image to be reconstructed, and we shall call these models handcrafted models. Later, handcrafted plus data-driven modeling started to emerge which still mostly relies on human designs, while part of the model is learned from the observed data. More recently, as more data and computation resources are made available, deep learning based models (or deep models) pushed the data-driven modeling to the extreme where the models are mostly based on learning with minimal human designs. Both handcrafted and data-driven modeling have their own advantages and disadvantages. One of the major research trends in medical imaging is to combine handcrafted modeling with deep modeling so that we can enjoy benefits from both approaches. The major part of this article is to provide a conceptual review of some recent works on deep modeling from the unrolling dynamics viewpoint. This viewpoint stimulates new designs of neural network architectures with inspirations from optimization algorithms and numerical differential equations. Given the popularity of deep modeling, there are still vast remaining challenges in the field, as well as opportunities which we shall discuss at the end of this article." @default.
- W2953997027 created "2019-07-12" @default.
- W2953997027 creator A5035683291 @default.
- W2953997027 creator A5035804966 @default.
- W2953997027 date "2019-06-23" @default.
- W2953997027 modified "2023-09-23" @default.
- W2953997027 title "A Review on Deep Learning in Medical Image Reconstruction" @default.
- W2953997027 cites W112727521 @default.
- W2953997027 cites W114517082 @default.
- W2953997027 cites W1435623351 @default.
- W2953997027 cites W1496099826 @default.
- W2953997027 cites W1515429414 @default.
- W2953997027 cites W1579559187 @default.
- W2953997027 cites W1597944220 @default.
- W2953997027 cites W1758610246 @default.
- W2953997027 cites W1771018557 @default.
- W2953997027 cites W1854566075 @default.
- W2953997027 cites W1901129140 @default.
- W2953997027 cites W1915360731 @default.
- W2953997027 cites W1955857676 @default.
- W2953997027 cites W1971735090 @default.
- W2953997027 cites W1981112674 @default.
- W2953997027 cites W1988115241 @default.
- W2953997027 cites W1994616650 @default.
- W2953997027 cites W1996287810 @default.
- W2953997027 cites W1997201895 @default.
- W2953997027 cites W1998331485 @default.
- W2953997027 cites W1998576973 @default.
- W2953997027 cites W1999829977 @default.
- W2953997027 cites W2019043293 @default.
- W2953997027 cites W2042257579 @default.
- W2953997027 cites W2042406285 @default.
- W2953997027 cites W2044774090 @default.
- W2953997027 cites W2045079045 @default.
- W2953997027 cites W2047625347 @default.
- W2953997027 cites W2048695508 @default.
- W2953997027 cites W2050900769 @default.
- W2953997027 cites W2052769657 @default.
- W2953997027 cites W2056370875 @default.
- W2953997027 cites W2057220024 @default.
- W2953997027 cites W2058583833 @default.
- W2953997027 cites W2061315188 @default.
- W2953997027 cites W2062024414 @default.
- W2953997027 cites W2083609718 @default.
- W2953997027 cites W2086670019 @default.
- W2953997027 cites W2090525223 @default.
- W2953997027 cites W2091422377 @default.
- W2953997027 cites W2091825929 @default.
- W2953997027 cites W2092663520 @default.
- W2953997027 cites W2097073572 @default.
- W2953997027 cites W2099471712 @default.
- W2953997027 cites W2100556411 @default.
- W2953997027 cites W2103496339 @default.
- W2953997027 cites W2103559027 @default.
- W2953997027 cites W2103628399 @default.
- W2953997027 cites W2103972604 @default.
- W2953997027 cites W2104276184 @default.
- W2953997027 cites W2110798204 @default.
- W2953997027 cites W2111453803 @default.
- W2953997027 cites W2112575052 @default.
- W2953997027 cites W2114487471 @default.
- W2953997027 cites W2115429828 @default.
- W2953997027 cites W2115706991 @default.
- W2953997027 cites W2118103795 @default.
- W2953997027 cites W2123870301 @default.
- W2953997027 cites W2131628350 @default.
- W2953997027 cites W2136396015 @default.
- W2953997027 cites W2141473882 @default.
- W2953997027 cites W2142058898 @default.
- W2953997027 cites W2142789340 @default.
- W2953997027 cites W2145094598 @default.
- W2953997027 cites W2146502635 @default.
- W2953997027 cites W2150134853 @default.
- W2953997027 cites W2158581396 @default.
- W2953997027 cites W2160547390 @default.
- W2953997027 cites W2163605009 @default.
- W2953997027 cites W2164278908 @default.
- W2953997027 cites W2166116275 @default.
- W2953997027 cites W2172174689 @default.
- W2953997027 cites W2194775991 @default.
- W2953997027 cites W2208555118 @default.
- W2953997027 cites W2266250228 @default.
- W2953997027 cites W228380312 @default.
- W2953997027 cites W2295936755 @default.
- W2953997027 cites W2302255633 @default.
- W2953997027 cites W2322609174 @default.
- W2953997027 cites W2331143823 @default.
- W2953997027 cites W2410678056 @default.
- W2953997027 cites W2486798210 @default.
- W2953997027 cites W2508487706 @default.
- W2953997027 cites W2528062157 @default.
- W2953997027 cites W2552808051 @default.
- W2953997027 cites W2552959509 @default.
- W2953997027 cites W2556016755 @default.
- W2953997027 cites W2557117065 @default.
- W2953997027 cites W2574952845 @default.
- W2953997027 cites W2584483805 @default.
- W2953997027 cites W2600297185 @default.
- W2953997027 cites W2603909116 @default.
- W2953997027 cites W2608329453 @default.