Matches in SemOpenAlex for { <https://semopenalex.org/work/W2953999746> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2953999746 endingPage "872" @default.
- W2953999746 startingPage "861" @default.
- W2953999746 abstract "Sickle Cell Disease (SCD), an inherited Red Blood Cell (RBC) disorder, is characterized by anaemia, end-organ damage, unpredictable episodes of pain and early mortality. SCD affects 25% of people living in Central and West Africa causing life threatening “silent” strokes and lifelong damage. Nigeria accounts for 50% of SCD births worldwide (estimated 150,000 of 300,000 babies born with Symptomatic Sickle Cell Anaemia (SSCA) yearly, an annual infant death of 100,000 (8% of her infant mortality)) and about 2.3% of her population suffers from SCD with 40 million (25%) being healthy carriers. The number of such babies born with SSCA yearly has been estimated as 400,000 by year 2050. Healthcare resources for SCD are inadequate and the numbers of SCD are increasing daily, thereby demanding more sufficient resources. Intermittent and recurrent acute pain episodes are associated with SCD as a result of vaso�occlusion. Pain management at the Emergency Department for vaso�occulsive crisis for patients with SCD has been obnoxious. Biopsychosocial assessment and multidisciplinary pain management may be required when treating patients with frequent, painful sickle cell crises. Early and aggressive SCD-related pain management becomes a priority to improve quality of life and prevent worsening morbidities. Computational Intelligence-based framework in promoting higher-quality care and consequent increased life-expectancy in SCD patients is expedient. Monte Carlo Simulation Technique of Random Number Generation was used to generate 515 datasets for enhanced fifteen attributes of SCD. The datasets’ features of SCD were used to train the neural network according to the pain encountered in identifying and treating the patient as fast as possible. This paper provides back-propagation algorithm of Artificial Neural Network in optimizing SCD-related pain classification and treatment processes, to complementa multidisciplinary care team intervention thereby increasing the quality of life" @default.
- W2953999746 created "2019-07-12" @default.
- W2953999746 creator A5036002629 @default.
- W2953999746 creator A5076722247 @default.
- W2953999746 creator A5087794996 @default.
- W2953999746 date "2019-06-01" @default.
- W2953999746 modified "2023-09-30" @default.
- W2953999746 title "Applying Neural Network-Based Approach to Sickle Cell Disease-Related Pain Classification" @default.
- W2953999746 cites W1568407807 @default.
- W2953999746 cites W1831122561 @default.
- W2953999746 cites W1976347544 @default.
- W2953999746 cites W2010188685 @default.
- W2953999746 cites W2027662398 @default.
- W2953999746 cites W2037630536 @default.
- W2953999746 cites W2040348817 @default.
- W2953999746 cites W2072462334 @default.
- W2953999746 cites W2080364776 @default.
- W2953999746 cites W2086239772 @default.
- W2953999746 cites W2095316267 @default.
- W2953999746 cites W2117136049 @default.
- W2953999746 cites W2128437156 @default.
- W2953999746 cites W2165576769 @default.
- W2953999746 cites W2266208964 @default.
- W2953999746 cites W2268511131 @default.
- W2953999746 cites W2501622818 @default.
- W2953999746 cites W2517891944 @default.
- W2953999746 cites W2548144048 @default.
- W2953999746 cites W2564421135 @default.
- W2953999746 cites W2751410528 @default.
- W2953999746 cites W2763575680 @default.
- W2953999746 cites W2766119845 @default.
- W2953999746 cites W2785688356 @default.
- W2953999746 cites W2790946160 @default.
- W2953999746 cites W650260511 @default.
- W2953999746 doi "https://doi.org/10.3844/jcssp.2019.861.872" @default.
- W2953999746 hasPublicationYear "2019" @default.
- W2953999746 type Work @default.
- W2953999746 sameAs 2953999746 @default.
- W2953999746 citedByCount "1" @default.
- W2953999746 countsByYear W29539997462020 @default.
- W2953999746 crossrefType "journal-article" @default.
- W2953999746 hasAuthorship W2953999746A5036002629 @default.
- W2953999746 hasAuthorship W2953999746A5076722247 @default.
- W2953999746 hasAuthorship W2953999746A5087794996 @default.
- W2953999746 hasBestOaLocation W29539997461 @default.
- W2953999746 hasConcept C119857082 @default.
- W2953999746 hasConcept C124101348 @default.
- W2953999746 hasConcept C142724271 @default.
- W2953999746 hasConcept C154945302 @default.
- W2953999746 hasConcept C2779134260 @default.
- W2953999746 hasConcept C41008148 @default.
- W2953999746 hasConcept C50644808 @default.
- W2953999746 hasConcept C71924100 @default.
- W2953999746 hasConceptScore W2953999746C119857082 @default.
- W2953999746 hasConceptScore W2953999746C124101348 @default.
- W2953999746 hasConceptScore W2953999746C142724271 @default.
- W2953999746 hasConceptScore W2953999746C154945302 @default.
- W2953999746 hasConceptScore W2953999746C2779134260 @default.
- W2953999746 hasConceptScore W2953999746C41008148 @default.
- W2953999746 hasConceptScore W2953999746C50644808 @default.
- W2953999746 hasConceptScore W2953999746C71924100 @default.
- W2953999746 hasIssue "6" @default.
- W2953999746 hasLocation W29539997461 @default.
- W2953999746 hasOpenAccess W2953999746 @default.
- W2953999746 hasPrimaryLocation W29539997461 @default.
- W2953999746 hasRelatedWork W2386387936 @default.
- W2953999746 hasRelatedWork W2961085424 @default.
- W2953999746 hasRelatedWork W3046775127 @default.
- W2953999746 hasRelatedWork W3107474891 @default.
- W2953999746 hasRelatedWork W4205958290 @default.
- W2953999746 hasRelatedWork W4286629047 @default.
- W2953999746 hasRelatedWork W4306321456 @default.
- W2953999746 hasRelatedWork W4306674287 @default.
- W2953999746 hasRelatedWork W1629725936 @default.
- W2953999746 hasRelatedWork W4224009465 @default.
- W2953999746 hasVolume "15" @default.
- W2953999746 isParatext "false" @default.
- W2953999746 isRetracted "false" @default.
- W2953999746 magId "2953999746" @default.
- W2953999746 workType "article" @default.