Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954037163> ?p ?o ?g. }
- W2954037163 abstract "Deep learning has been used as a powerful tool for various tasks in computer vision, such as image segmentation, object recognition and data generation. A key part of end-to-end training is designing the appropriate encoder to extract specific features from the input data. However, few encoders maintain the topological properties of data, such as connection structures and global contours. In this paper, we introduce a Voronoi Diagram encoder based on convex set distance (CSVD) and apply it in edge encoding. The boundaries of Voronoi cells is related to detected edges of structures and contours. The CSVD model improves contour extraction in CNN and structure generation in GAN. We also show the experimental results and demonstrate that the proposed model has great potentiality in different visual problems where topology information should be involved." @default.
- W2954037163 created "2019-07-12" @default.
- W2954037163 creator A5018778822 @default.
- W2954037163 date "2019-06-25" @default.
- W2954037163 modified "2023-10-18" @default.
- W2954037163 title "Topology Maintained Structure Encoding" @default.
- W2954037163 cites W1842610785 @default.
- W2954037163 cites W1910619957 @default.
- W2954037163 cites W1930528368 @default.
- W2954037163 cites W2015112308 @default.
- W2954037163 cites W2021566651 @default.
- W2954037163 cites W2036290398 @default.
- W2954037163 cites W2037227137 @default.
- W2954037163 cites W2047643928 @default.
- W2954037163 cites W2055408294 @default.
- W2954037163 cites W2099471712 @default.
- W2954037163 cites W2139236989 @default.
- W2954037163 cites W2145023731 @default.
- W2954037163 cites W2171101179 @default.
- W2954037163 cites W2519536754 @default.
- W2954037163 cites W2556802233 @default.
- W2954037163 cites W2560622558 @default.
- W2954037163 cites W2566365295 @default.
- W2954037163 cites W2607333215 @default.
- W2954037163 cites W2794557536 @default.
- W2954037163 cites W2807180962 @default.
- W2954037163 cites W2901107321 @default.
- W2954037163 cites W2962731536 @default.
- W2954037163 cites W2962760235 @default.
- W2954037163 cites W2962879692 @default.
- W2954037163 cites W2962958090 @default.
- W2954037163 cites W2963721253 @default.
- W2954037163 cites W2963800363 @default.
- W2954037163 cites W40061580 @default.
- W2954037163 doi "https://doi.org/10.48550/arxiv.1906.10823" @default.
- W2954037163 hasPublicationYear "2019" @default.
- W2954037163 type Work @default.
- W2954037163 sameAs 2954037163 @default.
- W2954037163 citedByCount "0" @default.
- W2954037163 crossrefType "posted-content" @default.
- W2954037163 hasAuthorship W2954037163A5018778822 @default.
- W2954037163 hasBestOaLocation W29540371631 @default.
- W2954037163 hasConcept C101738243 @default.
- W2954037163 hasConcept C108583219 @default.
- W2954037163 hasConcept C111919701 @default.
- W2954037163 hasConcept C114614502 @default.
- W2954037163 hasConcept C118505674 @default.
- W2954037163 hasConcept C124504099 @default.
- W2954037163 hasConcept C125411270 @default.
- W2954037163 hasConcept C153180895 @default.
- W2954037163 hasConcept C154945302 @default.
- W2954037163 hasConcept C162307627 @default.
- W2954037163 hasConcept C177264268 @default.
- W2954037163 hasConcept C184720557 @default.
- W2954037163 hasConcept C199360897 @default.
- W2954037163 hasConcept C24881265 @default.
- W2954037163 hasConcept C2524010 @default.
- W2954037163 hasConcept C26517878 @default.
- W2954037163 hasConcept C2781238097 @default.
- W2954037163 hasConcept C31972630 @default.
- W2954037163 hasConcept C33923547 @default.
- W2954037163 hasConcept C38652104 @default.
- W2954037163 hasConcept C41008148 @default.
- W2954037163 hasConcept C89600930 @default.
- W2954037163 hasConceptScore W2954037163C101738243 @default.
- W2954037163 hasConceptScore W2954037163C108583219 @default.
- W2954037163 hasConceptScore W2954037163C111919701 @default.
- W2954037163 hasConceptScore W2954037163C114614502 @default.
- W2954037163 hasConceptScore W2954037163C118505674 @default.
- W2954037163 hasConceptScore W2954037163C124504099 @default.
- W2954037163 hasConceptScore W2954037163C125411270 @default.
- W2954037163 hasConceptScore W2954037163C153180895 @default.
- W2954037163 hasConceptScore W2954037163C154945302 @default.
- W2954037163 hasConceptScore W2954037163C162307627 @default.
- W2954037163 hasConceptScore W2954037163C177264268 @default.
- W2954037163 hasConceptScore W2954037163C184720557 @default.
- W2954037163 hasConceptScore W2954037163C199360897 @default.
- W2954037163 hasConceptScore W2954037163C24881265 @default.
- W2954037163 hasConceptScore W2954037163C2524010 @default.
- W2954037163 hasConceptScore W2954037163C26517878 @default.
- W2954037163 hasConceptScore W2954037163C2781238097 @default.
- W2954037163 hasConceptScore W2954037163C31972630 @default.
- W2954037163 hasConceptScore W2954037163C33923547 @default.
- W2954037163 hasConceptScore W2954037163C38652104 @default.
- W2954037163 hasConceptScore W2954037163C41008148 @default.
- W2954037163 hasConceptScore W2954037163C89600930 @default.
- W2954037163 hasLocation W29540371631 @default.
- W2954037163 hasOpenAccess W2954037163 @default.
- W2954037163 hasPrimaryLocation W29540371631 @default.
- W2954037163 hasRelatedWork W1631910785 @default.
- W2954037163 hasRelatedWork W1669643531 @default.
- W2954037163 hasRelatedWork W1963494852 @default.
- W2954037163 hasRelatedWork W2004370856 @default.
- W2954037163 hasRelatedWork W2019566805 @default.
- W2954037163 hasRelatedWork W2026019026 @default.
- W2954037163 hasRelatedWork W2101128524 @default.
- W2954037163 hasRelatedWork W2122581818 @default.
- W2954037163 hasRelatedWork W2383464976 @default.
- W2954037163 hasRelatedWork W1967061043 @default.
- W2954037163 isParatext "false" @default.