Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954037305> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2954037305 abstract "Rapid development of software technology has influence on substantial industrial growth. Wide application of software in business related matters leads to development of reliable and defect free software system which is a challenging task. It requires development of effective techniques for prediction of software defects at early stage. For complexities in manual prediction of defects, automated techniques have come into effect. They are basically based on learning of pattern from earlier versions of software development and finding out the defects from the current version. Considerable impact of these techniques on industrial growth by predicting defects in software system attracted researchers in this field.In-spite of many studies performed by applying these techniques, desirable performance level and accurate defect prediction still remains a challenging task. For solving this problem, a hybrid technique based on Nonlinear Manifold Detection Techniques (Nonlinear MDTs) and machine learning for prediction of defects has been proposed in this paper. A new hybrid Nonlinear Manifold Detection (Nonlinear MD) Model has been applied for selecting and optimizing the features of software datasets that have been processed using Decision Tree (DT) and Random Forest (RF) classifications. Finally, a comparison and statistical evaluation of the experimental results obtained using new hybrid Nonlinear MD Model-DT have been made by Friedman test followed by Wilcoxon Sign rank test. The statistical outcome revealed that the proposed new hybrid Nonlinear MD Model-DT classification is better result oriented and more accurate in software defect prediction." @default.
- W2954037305 created "2019-07-12" @default.
- W2954037305 creator A5030362059 @default.
- W2954037305 creator A5034733443 @default.
- W2954037305 creator A5083370047 @default.
- W2954037305 date "2018-08-01" @default.
- W2954037305 modified "2023-09-23" @default.
- W2954037305 title "A Hybrid Nonlinear Manifold Detection Approach for Software Defect Prediction" @default.
- W2954037305 cites W2025700486 @default.
- W2954037305 cites W2026750231 @default.
- W2954037305 cites W2047338137 @default.
- W2954037305 cites W2048456683 @default.
- W2954037305 cites W2090854192 @default.
- W2954037305 cites W2107498895 @default.
- W2954037305 cites W2132513961 @default.
- W2954037305 cites W2145793758 @default.
- W2954037305 cites W2303501228 @default.
- W2954037305 cites W2305460223 @default.
- W2954037305 cites W2474835145 @default.
- W2954037305 cites W2583602225 @default.
- W2954037305 cites W2761745500 @default.
- W2954037305 cites W2921879499 @default.
- W2954037305 cites W3141989311 @default.
- W2954037305 doi "https://doi.org/10.1109/icrito.2018.8748788" @default.
- W2954037305 hasPublicationYear "2018" @default.
- W2954037305 type Work @default.
- W2954037305 sameAs 2954037305 @default.
- W2954037305 citedByCount "7" @default.
- W2954037305 countsByYear W29540373052018 @default.
- W2954037305 countsByYear W29540373052020 @default.
- W2954037305 countsByYear W29540373052021 @default.
- W2954037305 crossrefType "proceedings-article" @default.
- W2954037305 hasAuthorship W2954037305A5030362059 @default.
- W2954037305 hasAuthorship W2954037305A5034733443 @default.
- W2954037305 hasAuthorship W2954037305A5083370047 @default.
- W2954037305 hasConcept C121332964 @default.
- W2954037305 hasConcept C127413603 @default.
- W2954037305 hasConcept C158622935 @default.
- W2954037305 hasConcept C199360897 @default.
- W2954037305 hasConcept C2777904410 @default.
- W2954037305 hasConcept C41008148 @default.
- W2954037305 hasConcept C529865628 @default.
- W2954037305 hasConcept C62520636 @default.
- W2954037305 hasConcept C78519656 @default.
- W2954037305 hasConceptScore W2954037305C121332964 @default.
- W2954037305 hasConceptScore W2954037305C127413603 @default.
- W2954037305 hasConceptScore W2954037305C158622935 @default.
- W2954037305 hasConceptScore W2954037305C199360897 @default.
- W2954037305 hasConceptScore W2954037305C2777904410 @default.
- W2954037305 hasConceptScore W2954037305C41008148 @default.
- W2954037305 hasConceptScore W2954037305C529865628 @default.
- W2954037305 hasConceptScore W2954037305C62520636 @default.
- W2954037305 hasConceptScore W2954037305C78519656 @default.
- W2954037305 hasLocation W29540373051 @default.
- W2954037305 hasOpenAccess W2954037305 @default.
- W2954037305 hasPrimaryLocation W29540373051 @default.
- W2954037305 hasRelatedWork W1596705333 @default.
- W2954037305 hasRelatedWork W2003448928 @default.
- W2954037305 hasRelatedWork W2150221341 @default.
- W2954037305 hasRelatedWork W2165948086 @default.
- W2954037305 hasRelatedWork W2347547156 @default.
- W2954037305 hasRelatedWork W2356158875 @default.
- W2954037305 hasRelatedWork W2360518820 @default.
- W2954037305 hasRelatedWork W2361263333 @default.
- W2954037305 hasRelatedWork W2367699234 @default.
- W2954037305 hasRelatedWork W4287601326 @default.
- W2954037305 isParatext "false" @default.
- W2954037305 isRetracted "false" @default.
- W2954037305 magId "2954037305" @default.
- W2954037305 workType "article" @default.