Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954046734> ?p ?o ?g. }
- W2954046734 endingPage "214114" @default.
- W2954046734 startingPage "214114" @default.
- W2954046734 abstract "The success of enhanced sampling molecular simulations that accelerate along collective variables (CVs) is predicated on the availability of variables coincident with the slow collective motions governing the long-time conformational dynamics of a system. It is challenging to intuit these slow CVs for all but the simplest molecular systems, and their data-driven discovery directly from molecular simulation trajectories has been a central focus of the molecular simulation community to both unveil the important physical mechanisms and to drive enhanced sampling. In this work, we introduce state-free reversible VAMPnets (SRV) as a deep learning architecture that learns nonlinear CV approximants to the leading slow eigenfunctions of the spectral decomposition of the transfer operator that evolves equilibrium-scaled probability distributions through time. Orthogonality of the learned CVs is naturally imposed within network training without added regularization. The CVs are inherently explicit and differentiable functions of the input coordinates making them well-suited to use in enhanced sampling calculations. We demonstrate the utility of SRVs in capturing parsimonious nonlinear representations of complex system dynamics in applications to 1D and 2D toy systems where the true eigenfunctions are exactly calculable and to molecular dynamics simulations of alanine dipeptide and the WW domain protein." @default.
- W2954046734 created "2019-07-12" @default.
- W2954046734 creator A5010844336 @default.
- W2954046734 creator A5023302612 @default.
- W2954046734 creator A5024146798 @default.
- W2954046734 date "2019-06-07" @default.
- W2954046734 modified "2023-10-16" @default.
- W2954046734 title "Nonlinear discovery of slow molecular modes using state-free reversible VAMPnets" @default.
- W2954046734 cites W1489582602 @default.
- W2954046734 cites W1539138075 @default.
- W2954046734 cites W1976203248 @default.
- W2954046734 cites W1989544083 @default.
- W2954046734 cites W1998239582 @default.
- W2954046734 cites W2016267980 @default.
- W2954046734 cites W2016336300 @default.
- W2954046734 cites W2021541427 @default.
- W2954046734 cites W2029667189 @default.
- W2954046734 cites W2040188179 @default.
- W2954046734 cites W2044201287 @default.
- W2954046734 cites W2046898277 @default.
- W2954046734 cites W2057806291 @default.
- W2954046734 cites W2067236515 @default.
- W2954046734 cites W2069620421 @default.
- W2954046734 cites W2076063813 @default.
- W2954046734 cites W2085213650 @default.
- W2954046734 cites W2115617797 @default.
- W2954046734 cites W2130390906 @default.
- W2954046734 cites W2139923370 @default.
- W2954046734 cites W2142506069 @default.
- W2954046734 cites W2149655632 @default.
- W2954046734 cites W2160341881 @default.
- W2954046734 cites W2226825552 @default.
- W2954046734 cites W2294798173 @default.
- W2954046734 cites W2315297180 @default.
- W2954046734 cites W2317766861 @default.
- W2954046734 cites W2417954325 @default.
- W2954046734 cites W2528583500 @default.
- W2954046734 cites W2540372843 @default.
- W2954046734 cites W2570547882 @default.
- W2954046734 cites W2595314721 @default.
- W2954046734 cites W2604971487 @default.
- W2954046734 cites W2757258616 @default.
- W2954046734 cites W2765861397 @default.
- W2954046734 cites W2768480811 @default.
- W2954046734 cites W2781487518 @default.
- W2954046734 cites W2783073729 @default.
- W2954046734 cites W2793316145 @default.
- W2954046734 cites W2804422193 @default.
- W2954046734 cites W2889143727 @default.
- W2954046734 cites W2899667845 @default.
- W2954046734 cites W2903246169 @default.
- W2954046734 cites W2904535843 @default.
- W2954046734 cites W2949223833 @default.
- W2954046734 cites W2962959797 @default.
- W2954046734 cites W2963346670 @default.
- W2954046734 cites W2963383782 @default.
- W2954046734 cites W2963426504 @default.
- W2954046734 cites W2964129632 @default.
- W2954046734 cites W2964149432 @default.
- W2954046734 cites W3099205493 @default.
- W2954046734 cites W3099423575 @default.
- W2954046734 cites W3100810942 @default.
- W2954046734 cites W4236077070 @default.
- W2954046734 doi "https://doi.org/10.1063/1.5092521" @default.
- W2954046734 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31176319" @default.
- W2954046734 hasPublicationYear "2019" @default.
- W2954046734 type Work @default.
- W2954046734 sameAs 2954046734 @default.
- W2954046734 citedByCount "92" @default.
- W2954046734 countsByYear W29540467342019 @default.
- W2954046734 countsByYear W29540467342020 @default.
- W2954046734 countsByYear W29540467342021 @default.
- W2954046734 countsByYear W29540467342022 @default.
- W2954046734 countsByYear W29540467342023 @default.
- W2954046734 crossrefType "journal-article" @default.
- W2954046734 hasAuthorship W2954046734A5010844336 @default.
- W2954046734 hasAuthorship W2954046734A5023302612 @default.
- W2954046734 hasAuthorship W2954046734A5024146798 @default.
- W2954046734 hasBestOaLocation W29540467341 @default.
- W2954046734 hasConcept C106131492 @default.
- W2954046734 hasConcept C121332964 @default.
- W2954046734 hasConcept C121864883 @default.
- W2954046734 hasConcept C128803854 @default.
- W2954046734 hasConcept C134306372 @default.
- W2954046734 hasConcept C140779682 @default.
- W2954046734 hasConcept C158622935 @default.
- W2954046734 hasConcept C158693339 @default.
- W2954046734 hasConcept C202615002 @default.
- W2954046734 hasConcept C31972630 @default.
- W2954046734 hasConcept C33923547 @default.
- W2954046734 hasConcept C41008148 @default.
- W2954046734 hasConcept C59593255 @default.
- W2954046734 hasConcept C62520636 @default.
- W2954046734 hasConceptScore W2954046734C106131492 @default.
- W2954046734 hasConceptScore W2954046734C121332964 @default.
- W2954046734 hasConceptScore W2954046734C121864883 @default.
- W2954046734 hasConceptScore W2954046734C128803854 @default.
- W2954046734 hasConceptScore W2954046734C134306372 @default.