Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954088480> ?p ?o ?g. }
- W2954088480 abstract "Abstract Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist’s toolset. The use of computer simulations requires a balance between cost and accuracy: quantum-mechanical methods provide high accuracy but are computationally expensive and scale poorly to large systems, while classical force fields are cheap and scalable, but lack transferability to new systems. Machine learning can be used to achieve the best of both approaches. Here we train a general-purpose neural network potential (ANI-1ccx) that approaches CCSD(T)/CBS accuracy on benchmarks for reaction thermochemistry, isomerization, and drug-like molecular torsions. This is achieved by training a network to DFT data then using transfer learning techniques to retrain on a dataset of gold standard QM calculations (CCSD(T)/CBS) that optimally spans chemical space. The resulting potential is broadly applicable to materials science, biology, and chemistry, and billions of times faster than CCSD(T)/CBS calculations." @default.
- W2954088480 created "2019-07-12" @default.
- W2954088480 creator A5003874504 @default.
- W2954088480 creator A5004656368 @default.
- W2954088480 creator A5011932992 @default.
- W2954088480 creator A5021344986 @default.
- W2954088480 creator A5048973716 @default.
- W2954088480 creator A5056150849 @default.
- W2954088480 creator A5081624801 @default.
- W2954088480 creator A5083494710 @default.
- W2954088480 creator A5089986646 @default.
- W2954088480 date "2019-07-01" @default.
- W2954088480 modified "2023-10-17" @default.
- W2954088480 title "Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning" @default.
- W2954088480 cites W1584675441 @default.
- W2954088480 cites W1901616594 @default.
- W2954088480 cites W1971044734 @default.
- W2954088480 cites W1973727365 @default.
- W2954088480 cites W1998970054 @default.
- W2954088480 cites W2000798385 @default.
- W2954088480 cites W2008489596 @default.
- W2954088480 cites W2012458244 @default.
- W2954088480 cites W2014050554 @default.
- W2954088480 cites W2026444402 @default.
- W2954088480 cites W2039814685 @default.
- W2954088480 cites W2043578603 @default.
- W2954088480 cites W2050858126 @default.
- W2954088480 cites W2057858097 @default.
- W2954088480 cites W2058399106 @default.
- W2954088480 cites W2058452634 @default.
- W2954088480 cites W2067718414 @default.
- W2954088480 cites W2080021732 @default.
- W2954088480 cites W2080099522 @default.
- W2954088480 cites W2098614082 @default.
- W2954088480 cites W2104489082 @default.
- W2954088480 cites W2121400889 @default.
- W2954088480 cites W2122838776 @default.
- W2954088480 cites W2124088880 @default.
- W2954088480 cites W2149578461 @default.
- W2954088480 cites W2151338484 @default.
- W2954088480 cites W2165698076 @default.
- W2954088480 cites W2167872912 @default.
- W2954088480 cites W2234552091 @default.
- W2954088480 cites W2234602429 @default.
- W2954088480 cites W2322333511 @default.
- W2954088480 cites W2331368237 @default.
- W2954088480 cites W2333103724 @default.
- W2954088480 cites W2347129741 @default.
- W2954088480 cites W2509907061 @default.
- W2954088480 cites W2527189750 @default.
- W2954088480 cites W2541404351 @default.
- W2954088480 cites W2566573083 @default.
- W2954088480 cites W2585152223 @default.
- W2954088480 cites W2594341860 @default.
- W2954088480 cites W2601081289 @default.
- W2954088480 cites W2610107437 @default.
- W2954088480 cites W2613477619 @default.
- W2954088480 cites W2620687153 @default.
- W2954088480 cites W2639728117 @default.
- W2954088480 cites W2744546448 @default.
- W2954088480 cites W2746244909 @default.
- W2954088480 cites W2753962198 @default.
- W2954088480 cites W2768213699 @default.
- W2954088480 cites W2785813126 @default.
- W2954088480 cites W2785942661 @default.
- W2954088480 cites W2788873578 @default.
- W2954088480 cites W2789615344 @default.
- W2954088480 cites W2790700814 @default.
- W2954088480 cites W2800168263 @default.
- W2954088480 cites W2884817966 @default.
- W2954088480 cites W2885841934 @default.
- W2954088480 cites W2919115771 @default.
- W2954088480 cites W2963784900 @default.
- W2954088480 cites W2964268718 @default.
- W2954088480 cites W3098147976 @default.
- W2954088480 cites W3101643101 @default.
- W2954088480 cites W3104705366 @default.
- W2954088480 cites W3106310231 @default.
- W2954088480 doi "https://doi.org/10.1038/s41467-019-10827-4" @default.
- W2954088480 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6602931" @default.
- W2954088480 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31263102" @default.
- W2954088480 hasPublicationYear "2019" @default.
- W2954088480 type Work @default.
- W2954088480 sameAs 2954088480 @default.
- W2954088480 citedByCount "367" @default.
- W2954088480 countsByYear W29540884802019 @default.
- W2954088480 countsByYear W29540884802020 @default.
- W2954088480 countsByYear W29540884802021 @default.
- W2954088480 countsByYear W29540884802022 @default.
- W2954088480 countsByYear W29540884802023 @default.
- W2954088480 crossrefType "journal-article" @default.
- W2954088480 hasAuthorship W2954088480A5003874504 @default.
- W2954088480 hasAuthorship W2954088480A5004656368 @default.
- W2954088480 hasAuthorship W2954088480A5011932992 @default.
- W2954088480 hasAuthorship W2954088480A5021344986 @default.
- W2954088480 hasAuthorship W2954088480A5048973716 @default.
- W2954088480 hasAuthorship W2954088480A5056150849 @default.
- W2954088480 hasAuthorship W2954088480A5081624801 @default.
- W2954088480 hasAuthorship W2954088480A5083494710 @default.
- W2954088480 hasAuthorship W2954088480A5089986646 @default.