Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954093611> ?p ?o ?g. }
- W2954093611 endingPage "1945" @default.
- W2954093611 startingPage "1945" @default.
- W2954093611 abstract "Fluence-dependent sputtering yield measurements, surface morphology, crater depth, and hardness of laser-irradiated Zr in N2 and Ne environments have been investigated by employing an Nd:YAG laser (532 nm, 6 ns, 10 Hz). The targets were exposed to laser pulses at various fluences ranging from 16 J cm−2 to 60.8 J cm−2 under the N2 and Ne environments at a pressure of 10 Torr. Various features of irradiated targets, such as sputtering yield measurement, surface morphology, crater depth, chemical composition, and microhardness, are analyzed by quartz crystal microbalance (QCM), scanning electron microscope (SEM), optical microscope, energy dispersive x-ray spectroscopy (EDX), and Vicker microhardness tester techniques, respectively. QCM measurements reveal that the sputtering yield increases with increasing the fluence in both N2 and Ne environments. However, the values of sputtering yield are slightly higher in the case of N2 as compared to Ne. SEM analysis reveals the formation of cones, cavities, periodic ridges, and droplets at the central ablated areas, whereas the periodic ridges, cones, droplets, clusters, and agglomerates are formed at the inner boundaries of laser ablated Zr in both N2 and Ne. Distinct grain growth is observed at the outer boundaries in both environments. The characteristic features which are only present on Zr-irradiated surfaces in the case of N2 are cavities and in the case of Ne are droplets, clusters, and agglomerates. It is revealed that the surface structural growth is strongly dependent upon the laser fluence and nature of the ambient environment. The crater depth of laser-irradiated Zr is measured by using depth profilometry of an optical microscope. The higher observed values of sputtering yield and crater depth of laser ablated Zr in the case of N2 as compared to Ne are well correlated with distinct surface structures. EDX spectroscopy analysis reveals the nitride formation in the case of laser irradiation of Zr in a N2 environment. The Vicker microhardness tester reveals that the microhardness increases with increasing fluence under both environments; however, it is higher in Ne as compared to a N2 environment. Microstructured/nanostructured Zr can be highly useful in various advanced technological applications, e.g., in electronic, mechanical, fluidic, and optical devices. ZrN can be used as a hard and protective coating on mechanical tools as well as decorative coatings and diffusion barrier in p+/n junctions. The Zr plasma can be used as a source of thin film deposition as well as ion/electron implantation." @default.
- W2954093611 created "2019-07-12" @default.
- W2954093611 creator A5007528759 @default.
- W2954093611 creator A5021082953 @default.
- W2954093611 creator A5076157462 @default.
- W2954093611 creator A5079451172 @default.
- W2954093611 creator A5079725472 @default.
- W2954093611 date "2019-06-26" @default.
- W2954093611 modified "2023-10-17" @default.
- W2954093611 title "Fluence-dependent sputtering yield measurement, surface morphology, crater depth, and hardness of laser-irradiated Zr in N<sub>2</sub> and Ne environments" @default.
- W2954093611 cites W1491800866 @default.
- W2954093611 cites W1977934914 @default.
- W2954093611 cites W1979280746 @default.
- W2954093611 cites W1980486847 @default.
- W2954093611 cites W1981198871 @default.
- W2954093611 cites W1983917324 @default.
- W2954093611 cites W1983939529 @default.
- W2954093611 cites W1984153686 @default.
- W2954093611 cites W1986211545 @default.
- W2954093611 cites W1987542872 @default.
- W2954093611 cites W1991147281 @default.
- W2954093611 cites W1991918982 @default.
- W2954093611 cites W1992857022 @default.
- W2954093611 cites W2000996153 @default.
- W2954093611 cites W2001242122 @default.
- W2954093611 cites W2003760749 @default.
- W2954093611 cites W2003974343 @default.
- W2954093611 cites W2008818033 @default.
- W2954093611 cites W2023904319 @default.
- W2954093611 cites W2025143233 @default.
- W2954093611 cites W2026376510 @default.
- W2954093611 cites W2026668572 @default.
- W2954093611 cites W2026819663 @default.
- W2954093611 cites W2030349122 @default.
- W2954093611 cites W2032435310 @default.
- W2954093611 cites W2043644710 @default.
- W2954093611 cites W2044548428 @default.
- W2954093611 cites W2045585708 @default.
- W2954093611 cites W2051468028 @default.
- W2954093611 cites W2051939357 @default.
- W2954093611 cites W2054245686 @default.
- W2954093611 cites W2055499045 @default.
- W2954093611 cites W2058407894 @default.
- W2954093611 cites W2061878452 @default.
- W2954093611 cites W2063275837 @default.
- W2954093611 cites W2065971012 @default.
- W2954093611 cites W2070565040 @default.
- W2954093611 cites W2082211272 @default.
- W2954093611 cites W2082661162 @default.
- W2954093611 cites W2085776818 @default.
- W2954093611 cites W2093282852 @default.
- W2954093611 cites W2100725917 @default.
- W2954093611 cites W2104900374 @default.
- W2954093611 cites W2118849046 @default.
- W2954093611 cites W2156529189 @default.
- W2954093611 cites W2258226199 @default.
- W2954093611 cites W2320617140 @default.
- W2954093611 cites W2524358138 @default.
- W2954093611 cites W2584601840 @default.
- W2954093611 cites W2586107008 @default.
- W2954093611 cites W2599199563 @default.
- W2954093611 cites W2748102273 @default.
- W2954093611 cites W2784766138 @default.
- W2954093611 cites W2789739395 @default.
- W2954093611 cites W2862251491 @default.
- W2954093611 cites W2893407637 @default.
- W2954093611 cites W2901758652 @default.
- W2954093611 cites W2939681134 @default.
- W2954093611 cites W2481813268 @default.
- W2954093611 doi "https://doi.org/10.1364/josab.36.001945" @default.
- W2954093611 hasPublicationYear "2019" @default.
- W2954093611 type Work @default.
- W2954093611 sameAs 2954093611 @default.
- W2954093611 citedByCount "9" @default.
- W2954093611 countsByYear W29540936112020 @default.
- W2954093611 countsByYear W29540936112022 @default.
- W2954093611 countsByYear W29540936112023 @default.
- W2954093611 crossrefType "journal-article" @default.
- W2954093611 hasAuthorship W2954093611A5007528759 @default.
- W2954093611 hasAuthorship W2954093611A5021082953 @default.
- W2954093611 hasAuthorship W2954093611A5076157462 @default.
- W2954093611 hasAuthorship W2954093611A5079451172 @default.
- W2954093611 hasAuthorship W2954093611A5079725472 @default.
- W2954093611 hasConcept C111337013 @default.
- W2954093611 hasConcept C120665830 @default.
- W2954093611 hasConcept C121332964 @default.
- W2954093611 hasConcept C127313418 @default.
- W2954093611 hasConcept C134121241 @default.
- W2954093611 hasConcept C151730666 @default.
- W2954093611 hasConcept C159985019 @default.
- W2954093611 hasConcept C171250308 @default.
- W2954093611 hasConcept C179537507 @default.
- W2954093611 hasConcept C185544564 @default.
- W2954093611 hasConcept C185592680 @default.
- W2954093611 hasConcept C19067145 @default.
- W2954093611 hasConcept C192562407 @default.
- W2954093611 hasConcept C199289684 @default.
- W2954093611 hasConcept C22078206 @default.