Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954141573> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2954141573 abstract "Many software systems provide users with a set of configuration options and different configurations may lead to different runtime performance of the system. As the combination of configurations could be exponential, it is difficult to exhaustively deploy and measure system performance under all possible configurations. Recently, several learning methods have been proposed to build a performance prediction model based on performance data collected from a small sample of configurations, and then use the model to predict system performance under a new configuration. In this paper, we propose a novel approach to model highly configurable software system using a deep feedforward neural network (FNN) combined with a sparsity regularization technique, e.g. the L1 regularization. Besides, we also design a practical search strategy for automatically tuning the network hyperparameters efficiently. Our method, called DeepPerf, can predict performance values of highly configurable software systems with binary and/or numeric configuration options at much higher prediction accuracy with less training data than the state-of-the art approaches. Experimental results on eleven public real-world datasets confirm the effectiveness of our approach." @default.
- W2954141573 created "2019-07-12" @default.
- W2954141573 creator A5068743330 @default.
- W2954141573 creator A5069269172 @default.
- W2954141573 date "2019-05-01" @default.
- W2954141573 modified "2023-09-27" @default.
- W2954141573 title "DeepPerf: Performance Prediction for Configurable Software with Deep Sparse Neural Network" @default.
- W2954141573 cites W130464738 @default.
- W2954141573 cites W1971735090 @default.
- W2954141573 cites W1988115241 @default.
- W2954141573 cites W1988748355 @default.
- W2954141573 cites W2013108033 @default.
- W2954141573 cites W2042154985 @default.
- W2954141573 cites W2050625311 @default.
- W2954141573 cites W2072617662 @default.
- W2954141573 cites W2082677523 @default.
- W2954141573 cites W2103496339 @default.
- W2954141573 cites W2104236502 @default.
- W2954141573 cites W2108046820 @default.
- W2954141573 cites W2108999965 @default.
- W2954141573 cites W2135046866 @default.
- W2954141573 cites W2137983211 @default.
- W2954141573 cites W2149257325 @default.
- W2954141573 cites W2153635508 @default.
- W2954141573 cites W2166116275 @default.
- W2954141573 cites W2249475272 @default.
- W2954141573 cites W2528305538 @default.
- W2954141573 cites W2550848904 @default.
- W2954141573 cites W2590123570 @default.
- W2954141573 cites W2769879317 @default.
- W2954141573 cites W2962948349 @default.
- W2954141573 cites W2963721181 @default.
- W2954141573 cites W3003349084 @default.
- W2954141573 cites W3125537303 @default.
- W2954141573 cites W3143822685 @default.
- W2954141573 cites W3144844596 @default.
- W2954141573 cites W3145442896 @default.
- W2954141573 cites W4239510810 @default.
- W2954141573 cites W4255176593 @default.
- W2954141573 doi "https://doi.org/10.1109/icse.2019.00113" @default.
- W2954141573 hasPublicationYear "2019" @default.
- W2954141573 type Work @default.
- W2954141573 sameAs 2954141573 @default.
- W2954141573 citedByCount "50" @default.
- W2954141573 countsByYear W29541415732019 @default.
- W2954141573 countsByYear W29541415732020 @default.
- W2954141573 countsByYear W29541415732021 @default.
- W2954141573 countsByYear W29541415732022 @default.
- W2954141573 countsByYear W29541415732023 @default.
- W2954141573 crossrefType "proceedings-article" @default.
- W2954141573 hasAuthorship W2954141573A5068743330 @default.
- W2954141573 hasAuthorship W2954141573A5069269172 @default.
- W2954141573 hasConcept C119857082 @default.
- W2954141573 hasConcept C124101348 @default.
- W2954141573 hasConcept C154945302 @default.
- W2954141573 hasConcept C177264268 @default.
- W2954141573 hasConcept C199360897 @default.
- W2954141573 hasConcept C2776135515 @default.
- W2954141573 hasConcept C2777904410 @default.
- W2954141573 hasConcept C33923547 @default.
- W2954141573 hasConcept C41008148 @default.
- W2954141573 hasConcept C48372109 @default.
- W2954141573 hasConcept C50644808 @default.
- W2954141573 hasConcept C8642999 @default.
- W2954141573 hasConcept C94375191 @default.
- W2954141573 hasConceptScore W2954141573C119857082 @default.
- W2954141573 hasConceptScore W2954141573C124101348 @default.
- W2954141573 hasConceptScore W2954141573C154945302 @default.
- W2954141573 hasConceptScore W2954141573C177264268 @default.
- W2954141573 hasConceptScore W2954141573C199360897 @default.
- W2954141573 hasConceptScore W2954141573C2776135515 @default.
- W2954141573 hasConceptScore W2954141573C2777904410 @default.
- W2954141573 hasConceptScore W2954141573C33923547 @default.
- W2954141573 hasConceptScore W2954141573C41008148 @default.
- W2954141573 hasConceptScore W2954141573C48372109 @default.
- W2954141573 hasConceptScore W2954141573C50644808 @default.
- W2954141573 hasConceptScore W2954141573C8642999 @default.
- W2954141573 hasConceptScore W2954141573C94375191 @default.
- W2954141573 hasLocation W29541415731 @default.
- W2954141573 hasOpenAccess W2954141573 @default.
- W2954141573 hasPrimaryLocation W29541415731 @default.
- W2954141573 hasRelatedWork W3199608561 @default.
- W2954141573 hasRelatedWork W4210794429 @default.
- W2954141573 hasRelatedWork W4223456145 @default.
- W2954141573 hasRelatedWork W4280535922 @default.
- W2954141573 hasRelatedWork W4283697347 @default.
- W2954141573 hasRelatedWork W4295309597 @default.
- W2954141573 hasRelatedWork W4304128395 @default.
- W2954141573 hasRelatedWork W4309113015 @default.
- W2954141573 hasRelatedWork W4313854490 @default.
- W2954141573 hasRelatedWork W1629725936 @default.
- W2954141573 isParatext "false" @default.
- W2954141573 isRetracted "false" @default.
- W2954141573 magId "2954141573" @default.
- W2954141573 workType "article" @default.