Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954157060> ?p ?o ?g. }
- W2954157060 endingPage "507" @default.
- W2954157060 startingPage "497" @default.
- W2954157060 abstract "Rationale and Objectives To estimate recurrence risk after surgery in nonsmall cell lung cancer (NSCLC) patients by employing tumoral and peritumoral radiomics analysis. Materials and Methods One-hundred twenty-four surgically treated stage IA–IIB NSCLC patients’ data from 2008 to 2013 were retrospectively collected. Patient outcome was defined as local recurrence (LR), distant metastasis (DM), and (sum of LR and DM) total recurrence (TR) at follow-up. Volumetric region of interests (ROIs) were drawn for the tumor, peritumoral lung parenchyma (2 cm around the tumor) and involved lobe on CT images. Ninety-four (morphological, first-order, textural, fractal-based) radiomics features were extracted from the ROIs and datasets were created from single or combined ROIs. Predictive models were built with radiomics signature (RS) and clinicopathological data, and the area under the curve (AUC) was used to evaluate the performance. Radiomics score was calculated with the best models’ feature coefficients, low- and high-risk groups of patients defined accordingly. Kaplan–Meier curves were built, and the log-rank test was used for comparison among low- and high-risk groups. Differences in recurrence risk among the two risk groups were calculated (chi-square test). Results Fifty-six patients developed TR (25 LR, 31 DM). The tumor-node-metastasis (TNM) stage recurrence predictability (AUCTR 0.680; AUCDM 0.672; AUCLR 0.580) was substantially improved when RS was added to the predictive model (AUCTR 0.760; AUCDM 0.759; AUCLR 0.750). Seventy-five percent of high-risk patients developed TR. Recurrence risk of the high-risk group was 16-fold higher than that of the low-risk group (p < 0.001). Conclusion Combination of the tumoral and peritumoral RS with TNM staging system outperformed TNM staging alone in individualized recurrence risk estimation of patients with surgically treated NSCLC. To estimate recurrence risk after surgery in nonsmall cell lung cancer (NSCLC) patients by employing tumoral and peritumoral radiomics analysis. One-hundred twenty-four surgically treated stage IA–IIB NSCLC patients’ data from 2008 to 2013 were retrospectively collected. Patient outcome was defined as local recurrence (LR), distant metastasis (DM), and (sum of LR and DM) total recurrence (TR) at follow-up. Volumetric region of interests (ROIs) were drawn for the tumor, peritumoral lung parenchyma (2 cm around the tumor) and involved lobe on CT images. Ninety-four (morphological, first-order, textural, fractal-based) radiomics features were extracted from the ROIs and datasets were created from single or combined ROIs. Predictive models were built with radiomics signature (RS) and clinicopathological data, and the area under the curve (AUC) was used to evaluate the performance. Radiomics score was calculated with the best models’ feature coefficients, low- and high-risk groups of patients defined accordingly. Kaplan–Meier curves were built, and the log-rank test was used for comparison among low- and high-risk groups. Differences in recurrence risk among the two risk groups were calculated (chi-square test). Fifty-six patients developed TR (25 LR, 31 DM). The tumor-node-metastasis (TNM) stage recurrence predictability (AUCTR 0.680; AUCDM 0.672; AUCLR 0.580) was substantially improved when RS was added to the predictive model (AUCTR 0.760; AUCDM 0.759; AUCLR 0.750). Seventy-five percent of high-risk patients developed TR. Recurrence risk of the high-risk group was 16-fold higher than that of the low-risk group (p < 0.001). Combination of the tumoral and peritumoral RS with TNM staging system outperformed TNM staging alone in individualized recurrence risk estimation of patients with surgically treated NSCLC." @default.
- W2954157060 created "2019-07-12" @default.
- W2954157060 creator A5006608282 @default.
- W2954157060 creator A5006652678 @default.
- W2954157060 creator A5007998881 @default.
- W2954157060 creator A5008208200 @default.
- W2954157060 creator A5029172836 @default.
- W2954157060 creator A5030546856 @default.
- W2954157060 creator A5036264666 @default.
- W2954157060 creator A5048906008 @default.
- W2954157060 creator A5051064975 @default.
- W2954157060 creator A5074992796 @default.
- W2954157060 creator A5080512690 @default.
- W2954157060 creator A5083762202 @default.
- W2954157060 date "2020-04-01" @default.
- W2954157060 modified "2023-10-18" @default.
- W2954157060 title "CT Radiomics Signature of Tumor and Peritumoral Lung Parenchyma to Predict Nonsmall Cell Lung Cancer Postsurgical Recurrence Risk" @default.
- W2954157060 cites W1971091705 @default.
- W2954157060 cites W1975266543 @default.
- W2954157060 cites W1987054640 @default.
- W2954157060 cites W1988125844 @default.
- W2954157060 cites W2009637031 @default.
- W2954157060 cites W2013677148 @default.
- W2954157060 cites W2049615265 @default.
- W2954157060 cites W2052507258 @default.
- W2954157060 cites W2057604474 @default.
- W2954157060 cites W2061077502 @default.
- W2954157060 cites W2062698423 @default.
- W2954157060 cites W2067959276 @default.
- W2954157060 cites W2087887679 @default.
- W2954157060 cites W2099719565 @default.
- W2954157060 cites W2110723426 @default.
- W2954157060 cites W2114175038 @default.
- W2954157060 cites W2153169173 @default.
- W2954157060 cites W2174661749 @default.
- W2954157060 cites W2327203407 @default.
- W2954157060 cites W2328210546 @default.
- W2954157060 cites W2329936645 @default.
- W2954157060 cites W2330971088 @default.
- W2954157060 cites W2338137334 @default.
- W2954157060 cites W2461805626 @default.
- W2954157060 cites W2570633628 @default.
- W2954157060 cites W2756818491 @default.
- W2954157060 cites W2757566931 @default.
- W2954157060 cites W2795513894 @default.
- W2954157060 cites W2899315113 @default.
- W2954157060 cites W2917837889 @default.
- W2954157060 cites W4248973632 @default.
- W2954157060 doi "https://doi.org/10.1016/j.acra.2019.05.019" @default.
- W2954157060 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31285150" @default.
- W2954157060 hasPublicationYear "2020" @default.
- W2954157060 type Work @default.
- W2954157060 sameAs 2954157060 @default.
- W2954157060 citedByCount "53" @default.
- W2954157060 countsByYear W29541570602019 @default.
- W2954157060 countsByYear W29541570602020 @default.
- W2954157060 countsByYear W29541570602021 @default.
- W2954157060 countsByYear W29541570602022 @default.
- W2954157060 countsByYear W29541570602023 @default.
- W2954157060 crossrefType "journal-article" @default.
- W2954157060 hasAuthorship W2954157060A5006608282 @default.
- W2954157060 hasAuthorship W2954157060A5006652678 @default.
- W2954157060 hasAuthorship W2954157060A5007998881 @default.
- W2954157060 hasAuthorship W2954157060A5008208200 @default.
- W2954157060 hasAuthorship W2954157060A5029172836 @default.
- W2954157060 hasAuthorship W2954157060A5030546856 @default.
- W2954157060 hasAuthorship W2954157060A5036264666 @default.
- W2954157060 hasAuthorship W2954157060A5048906008 @default.
- W2954157060 hasAuthorship W2954157060A5051064975 @default.
- W2954157060 hasAuthorship W2954157060A5074992796 @default.
- W2954157060 hasAuthorship W2954157060A5080512690 @default.
- W2954157060 hasAuthorship W2954157060A5083762202 @default.
- W2954157060 hasConcept C11783203 @default.
- W2954157060 hasConcept C121608353 @default.
- W2954157060 hasConcept C126322002 @default.
- W2954157060 hasConcept C126838900 @default.
- W2954157060 hasConcept C142724271 @default.
- W2954157060 hasConcept C143998085 @default.
- W2954157060 hasConcept C146357865 @default.
- W2954157060 hasConcept C151730666 @default.
- W2954157060 hasConcept C167135981 @default.
- W2954157060 hasConcept C196822366 @default.
- W2954157060 hasConcept C2776256026 @default.
- W2954157060 hasConcept C2778559731 @default.
- W2954157060 hasConcept C2779013556 @default.
- W2954157060 hasConcept C2779134260 @default.
- W2954157060 hasConcept C71924100 @default.
- W2954157060 hasConcept C86803240 @default.
- W2954157060 hasConceptScore W2954157060C11783203 @default.
- W2954157060 hasConceptScore W2954157060C121608353 @default.
- W2954157060 hasConceptScore W2954157060C126322002 @default.
- W2954157060 hasConceptScore W2954157060C126838900 @default.
- W2954157060 hasConceptScore W2954157060C142724271 @default.
- W2954157060 hasConceptScore W2954157060C143998085 @default.
- W2954157060 hasConceptScore W2954157060C146357865 @default.
- W2954157060 hasConceptScore W2954157060C151730666 @default.
- W2954157060 hasConceptScore W2954157060C167135981 @default.
- W2954157060 hasConceptScore W2954157060C196822366 @default.