Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954184520> ?p ?o ?g. }
- W2954184520 endingPage "3525" @default.
- W2954184520 startingPage "3525" @default.
- W2954184520 abstract "In order to investigate the factors influencing the sustainable guarantee network and its differences in different spatial and temporal scales, logistic regression algorithm is used to analyze the data of listed companies in 31 provinces, municipalities and autonomous regions in China from 2008 to 2017 (excluding Hong Kong, Macau and Taiwan). The study finds that, overall, companies with better profitability, poor solvency, poor operational capability and higher levels of economic development are more likely to join the guarantee network. On the temporal scale, solvency and regional economic development exert increasing higher impact on the companies’ accession to the guarantee network, and operational capacity has increasingly smaller impact. On the spatial scale, the less close link between company executives and companies in the western region suggests higher possibility to join the guarantee network. The predictive accuracy test results of the logistic regression algorithm show that the training model of the western sample enterprises has the highest prediction accuracy when predicting enterprise behavior of joining the guarantee network, while the accuracy is the lowest in the central region. When forecasting enterprises’ failure to join the guarantee network, the training model of the central sample enterprise has the highest accuracy, while the accuracy is the lowest in the eastern region. This paper discusses the internal and external factors influencing the guarantee network risk from the perspective of spatial and temporal differences of the guarantee network, and discriminates the prediction accuracy of the training model, which means certain guiding significance for listed company management, bank and government to identify and control the guarantee network risk." @default.
- W2954184520 created "2019-07-12" @default.
- W2954184520 creator A5023187857 @default.
- W2954184520 creator A5049967343 @default.
- W2954184520 creator A5061415158 @default.
- W2954184520 creator A5063291373 @default.
- W2954184520 creator A5075000826 @default.
- W2954184520 creator A5085537150 @default.
- W2954184520 date "2019-06-27" @default.
- W2954184520 modified "2023-09-25" @default.
- W2954184520 title "Risk Factor Identification of Sustainable Guarantee Network Based on Logistic Regression Algorithm" @default.
- W2954184520 cites W1986012910 @default.
- W2954184520 cites W2037521713 @default.
- W2954184520 cites W2040619202 @default.
- W2954184520 cites W2059848767 @default.
- W2954184520 cites W2099615275 @default.
- W2954184520 cites W2111504671 @default.
- W2954184520 cites W2133231666 @default.
- W2954184520 cites W2593842564 @default.
- W2954184520 cites W2599612773 @default.
- W2954184520 cites W2768254853 @default.
- W2954184520 cites W2782578088 @default.
- W2954184520 cites W2789555074 @default.
- W2954184520 cites W2791720814 @default.
- W2954184520 cites W2806318817 @default.
- W2954184520 cites W2809524815 @default.
- W2954184520 cites W2922166087 @default.
- W2954184520 cites W2928557426 @default.
- W2954184520 cites W3121831699 @default.
- W2954184520 cites W3122785168 @default.
- W2954184520 cites W3123140601 @default.
- W2954184520 cites W3123574039 @default.
- W2954184520 cites W3123963359 @default.
- W2954184520 cites W3124317733 @default.
- W2954184520 cites W3124536211 @default.
- W2954184520 cites W3125388817 @default.
- W2954184520 doi "https://doi.org/10.3390/su11133525" @default.
- W2954184520 hasPublicationYear "2019" @default.
- W2954184520 type Work @default.
- W2954184520 sameAs 2954184520 @default.
- W2954184520 citedByCount "32" @default.
- W2954184520 countsByYear W29541845202020 @default.
- W2954184520 countsByYear W29541845202021 @default.
- W2954184520 countsByYear W29541845202022 @default.
- W2954184520 countsByYear W29541845202023 @default.
- W2954184520 crossrefType "journal-article" @default.
- W2954184520 hasAuthorship W2954184520A5023187857 @default.
- W2954184520 hasAuthorship W2954184520A5049967343 @default.
- W2954184520 hasAuthorship W2954184520A5061415158 @default.
- W2954184520 hasAuthorship W2954184520A5063291373 @default.
- W2954184520 hasAuthorship W2954184520A5075000826 @default.
- W2954184520 hasAuthorship W2954184520A5085537150 @default.
- W2954184520 hasBestOaLocation W29541845201 @default.
- W2954184520 hasConcept C10138342 @default.
- W2954184520 hasConcept C116834253 @default.
- W2954184520 hasConcept C119857082 @default.
- W2954184520 hasConcept C124101348 @default.
- W2954184520 hasConcept C129361004 @default.
- W2954184520 hasConcept C144133560 @default.
- W2954184520 hasConcept C151956035 @default.
- W2954184520 hasConcept C183582576 @default.
- W2954184520 hasConcept C185592680 @default.
- W2954184520 hasConcept C198531522 @default.
- W2954184520 hasConcept C205649164 @default.
- W2954184520 hasConcept C2778215004 @default.
- W2954184520 hasConcept C2778755073 @default.
- W2954184520 hasConcept C41008148 @default.
- W2954184520 hasConcept C43617362 @default.
- W2954184520 hasConcept C58640448 @default.
- W2954184520 hasConcept C59822182 @default.
- W2954184520 hasConcept C86803240 @default.
- W2954184520 hasConceptScore W2954184520C10138342 @default.
- W2954184520 hasConceptScore W2954184520C116834253 @default.
- W2954184520 hasConceptScore W2954184520C119857082 @default.
- W2954184520 hasConceptScore W2954184520C124101348 @default.
- W2954184520 hasConceptScore W2954184520C129361004 @default.
- W2954184520 hasConceptScore W2954184520C144133560 @default.
- W2954184520 hasConceptScore W2954184520C151956035 @default.
- W2954184520 hasConceptScore W2954184520C183582576 @default.
- W2954184520 hasConceptScore W2954184520C185592680 @default.
- W2954184520 hasConceptScore W2954184520C198531522 @default.
- W2954184520 hasConceptScore W2954184520C205649164 @default.
- W2954184520 hasConceptScore W2954184520C2778215004 @default.
- W2954184520 hasConceptScore W2954184520C2778755073 @default.
- W2954184520 hasConceptScore W2954184520C41008148 @default.
- W2954184520 hasConceptScore W2954184520C43617362 @default.
- W2954184520 hasConceptScore W2954184520C58640448 @default.
- W2954184520 hasConceptScore W2954184520C59822182 @default.
- W2954184520 hasConceptScore W2954184520C86803240 @default.
- W2954184520 hasIssue "13" @default.
- W2954184520 hasLocation W29541845201 @default.
- W2954184520 hasLocation W29541845202 @default.
- W2954184520 hasLocation W29541845203 @default.
- W2954184520 hasOpenAccess W2954184520 @default.
- W2954184520 hasPrimaryLocation W29541845201 @default.
- W2954184520 hasRelatedWork W1502261541 @default.
- W2954184520 hasRelatedWork W2382631582 @default.
- W2954184520 hasRelatedWork W2905217551 @default.