Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954297049> ?p ?o ?g. }
- W2954297049 endingPage "867" @default.
- W2954297049 startingPage "867" @default.
- W2954297049 abstract "With the improvement of human living standards, users’ requirements have changed from function to emotion. Helping users pick out the most suitable product based on their subjective requirements is of great importance for enterprises. This paper proposes a Kansei engineering-based grey relational analysis and techniques for order preference by similarity to ideal solution (KE-GAR-TOPSIS) method to make a subjective user personalized ranking of alternative products. The KE-GRA-TOPSIS method integrates five methods, including Kansei Engineering (KE), analytic hierarchy process (AHP), entropy, game theory, and grey relational analysis-TOPSIS (GRA-TOPSIS). First, an evaluation system is established by KE and AHP. Second, we define a matrix variate—Kansei decision matrix (KDM)—to describe the satisfaction of user requirements. Third, the AHP is used to obtain subjective weight. Next, the entropy method is employed to obtain objective weights by taking the KDM as input. Then the two types of weights are optimized using game theory to obtain the comprehensive weights. Finally, the GRA-TOPSIS method takes the comprehensive weights and the KMD as inputs to rank alternatives. A comparison of the KE-GRA-TOPSIS, KE-TOPSIS, KE-GRA, GRA-TOPSIS, and TOPSIS is conducted to illustrate the unique merits of the KE-GRA-TOPSIS method in Kansei evaluation. Finally, taking the electric drill as an example, we describe the process of the proposed method in detail, which achieves a symmetry between the objectivity of products and subjectivity of users." @default.
- W2954297049 created "2019-07-12" @default.
- W2954297049 creator A5011768249 @default.
- W2954297049 creator A5022632720 @default.
- W2954297049 creator A5059348342 @default.
- W2954297049 creator A5060537711 @default.
- W2954297049 date "2019-07-03" @default.
- W2954297049 modified "2023-10-17" @default.
- W2954297049 title "Personalized Product Evaluation Based on GRA-TOPSIS and Kansei Engineering" @default.
- W2954297049 cites W1963593953 @default.
- W2954297049 cites W1970699669 @default.
- W2954297049 cites W1985730250 @default.
- W2954297049 cites W1986349148 @default.
- W2954297049 cites W1993664678 @default.
- W2954297049 cites W1995875735 @default.
- W2954297049 cites W2007802515 @default.
- W2954297049 cites W2025874826 @default.
- W2954297049 cites W2033401964 @default.
- W2954297049 cites W2039250433 @default.
- W2954297049 cites W2040862516 @default.
- W2954297049 cites W2046078150 @default.
- W2954297049 cites W2056263711 @default.
- W2954297049 cites W2083053357 @default.
- W2954297049 cites W2092836187 @default.
- W2954297049 cites W2093547440 @default.
- W2954297049 cites W2131314315 @default.
- W2954297049 cites W2136491681 @default.
- W2954297049 cites W2147910644 @default.
- W2954297049 cites W2159946039 @default.
- W2954297049 cites W2186193101 @default.
- W2954297049 cites W2326627146 @default.
- W2954297049 cites W2397069807 @default.
- W2954297049 cites W2508454452 @default.
- W2954297049 cites W2518575924 @default.
- W2954297049 cites W2585206336 @default.
- W2954297049 cites W2765335239 @default.
- W2954297049 cites W2788923822 @default.
- W2954297049 cites W2791905230 @default.
- W2954297049 cites W2794074526 @default.
- W2954297049 cites W2852087287 @default.
- W2954297049 cites W2895015859 @default.
- W2954297049 cites W2902356721 @default.
- W2954297049 cites W2907046503 @default.
- W2954297049 cites W2911197094 @default.
- W2954297049 cites W2916704091 @default.
- W2954297049 cites W4379014164 @default.
- W2954297049 cites W3147082496 @default.
- W2954297049 doi "https://doi.org/10.3390/sym11070867" @default.
- W2954297049 hasPublicationYear "2019" @default.
- W2954297049 type Work @default.
- W2954297049 sameAs 2954297049 @default.
- W2954297049 citedByCount "36" @default.
- W2954297049 countsByYear W29542970492020 @default.
- W2954297049 countsByYear W29542970492021 @default.
- W2954297049 countsByYear W29542970492022 @default.
- W2954297049 countsByYear W29542970492023 @default.
- W2954297049 crossrefType "journal-article" @default.
- W2954297049 hasAuthorship W2954297049A5011768249 @default.
- W2954297049 hasAuthorship W2954297049A5022632720 @default.
- W2954297049 hasAuthorship W2954297049A5059348342 @default.
- W2954297049 hasAuthorship W2954297049A5060537711 @default.
- W2954297049 hasBestOaLocation W29542970491 @default.
- W2954297049 hasConcept C105795698 @default.
- W2954297049 hasConcept C106301342 @default.
- W2954297049 hasConcept C107457646 @default.
- W2954297049 hasConcept C121332964 @default.
- W2954297049 hasConcept C124101348 @default.
- W2954297049 hasConcept C137402852 @default.
- W2954297049 hasConcept C154945302 @default.
- W2954297049 hasConcept C189430467 @default.
- W2954297049 hasConcept C2780562538 @default.
- W2954297049 hasConcept C2781297728 @default.
- W2954297049 hasConcept C33923547 @default.
- W2954297049 hasConcept C41008148 @default.
- W2954297049 hasConcept C42475967 @default.
- W2954297049 hasConcept C51566761 @default.
- W2954297049 hasConcept C62520636 @default.
- W2954297049 hasConcept C64734493 @default.
- W2954297049 hasConcept C87345402 @default.
- W2954297049 hasConcept C89591040 @default.
- W2954297049 hasConcept C97355855 @default.
- W2954297049 hasConceptScore W2954297049C105795698 @default.
- W2954297049 hasConceptScore W2954297049C106301342 @default.
- W2954297049 hasConceptScore W2954297049C107457646 @default.
- W2954297049 hasConceptScore W2954297049C121332964 @default.
- W2954297049 hasConceptScore W2954297049C124101348 @default.
- W2954297049 hasConceptScore W2954297049C137402852 @default.
- W2954297049 hasConceptScore W2954297049C154945302 @default.
- W2954297049 hasConceptScore W2954297049C189430467 @default.
- W2954297049 hasConceptScore W2954297049C2780562538 @default.
- W2954297049 hasConceptScore W2954297049C2781297728 @default.
- W2954297049 hasConceptScore W2954297049C33923547 @default.
- W2954297049 hasConceptScore W2954297049C41008148 @default.
- W2954297049 hasConceptScore W2954297049C42475967 @default.
- W2954297049 hasConceptScore W2954297049C51566761 @default.
- W2954297049 hasConceptScore W2954297049C62520636 @default.
- W2954297049 hasConceptScore W2954297049C64734493 @default.
- W2954297049 hasConceptScore W2954297049C87345402 @default.