Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954315051> ?p ?o ?g. }
- W2954315051 endingPage "114" @default.
- W2954315051 startingPage "79" @default.
- W2954315051 abstract "A staggering 1.25 million people die and up to 50 million people suffer injuries annually due to road traffic crashes around the world, causing great socio-economic and environmental damages. Road collisions are a major cause of road congestion. The cost of congestion to the US economy, alone, exceeded 305 billion USD in 2017. Smart infrastructure developments have accelerated the pace of technological advancements and the penetration of these technologies to all spheres of everyday life including transportation. The use of GPS devices to collect data, image processing and artificial intelligence (AI) for traffic analysis, and autonomous driving are but a few examples. This paper brings together transport big data, deep learning, in-memory computing, and GPU computing to predict traffic incidents on the road. Three different kinds of datasets—road traffic, vehicle detector station (VDS), and incident data—are combined together to predict road traffic incidents. The data is acquired from the California Department of Transportation (Caltrans) Performance Measurement System (PeMS). We have analyzed over 10 years of road traffic data. This work-in-progress paper reports incident prediction results using 3 months’ data, September to November 2017. The data fusion methodology is explained in detail along with the algorithms. The results for various configurations of deep convolution neural networks are given. Conclusions are drawn from the current status of the results and ideas for future improvements are given." @default.
- W2954315051 created "2019-07-12" @default.
- W2954315051 creator A5022780651 @default.
- W2954315051 creator A5049153994 @default.
- W2954315051 creator A5077619272 @default.
- W2954315051 creator A5088974635 @default.
- W2954315051 date "2019-06-21" @default.
- W2954315051 modified "2023-10-14" @default.
- W2954315051 title "In-Memory Deep Learning Computations on GPUs for Prediction of Road Traffic Incidents Using Big Data Fusion" @default.
- W2954315051 cites W1529414135 @default.
- W2954315051 cites W1861322917 @default.
- W2954315051 cites W1883111670 @default.
- W2954315051 cites W1909447605 @default.
- W2954315051 cites W1969345193 @default.
- W2954315051 cites W1986308189 @default.
- W2954315051 cites W1995840715 @default.
- W2954315051 cites W2004353783 @default.
- W2954315051 cites W2014090668 @default.
- W2954315051 cites W2014256014 @default.
- W2954315051 cites W2016840500 @default.
- W2954315051 cites W2020805267 @default.
- W2954315051 cites W2031896749 @default.
- W2954315051 cites W2034748721 @default.
- W2954315051 cites W2036405443 @default.
- W2954315051 cites W2043833161 @default.
- W2954315051 cites W2046785663 @default.
- W2954315051 cites W2078584509 @default.
- W2954315051 cites W2081746770 @default.
- W2954315051 cites W2102818992 @default.
- W2954315051 cites W2126592598 @default.
- W2954315051 cites W2151744441 @default.
- W2954315051 cites W2170505850 @default.
- W2954315051 cites W2176950688 @default.
- W2954315051 cites W2220344653 @default.
- W2954315051 cites W2299239789 @default.
- W2954315051 cites W2304302387 @default.
- W2954315051 cites W2402702445 @default.
- W2954315051 cites W2428379754 @default.
- W2954315051 cites W2469636965 @default.
- W2954315051 cites W2473885843 @default.
- W2954315051 cites W2477008314 @default.
- W2954315051 cites W2561722812 @default.
- W2954315051 cites W2573587735 @default.
- W2954315051 cites W2588547626 @default.
- W2954315051 cites W2593850304 @default.
- W2954315051 cites W2624190409 @default.
- W2954315051 cites W2624959218 @default.
- W2954315051 cites W2626126425 @default.
- W2954315051 cites W2730770426 @default.
- W2954315051 cites W2795420234 @default.
- W2954315051 cites W2805291027 @default.
- W2954315051 cites W2808064527 @default.
- W2954315051 cites W2883970824 @default.
- W2954315051 cites W2963048283 @default.
- W2954315051 cites W3104764698 @default.
- W2954315051 cites W4237849500 @default.
- W2954315051 cites W770696929 @default.
- W2954315051 cites W2756880332 @default.
- W2954315051 doi "https://doi.org/10.1007/978-3-030-13705-2_4" @default.
- W2954315051 hasPublicationYear "2019" @default.
- W2954315051 type Work @default.
- W2954315051 sameAs 2954315051 @default.
- W2954315051 citedByCount "5" @default.
- W2954315051 countsByYear W29543150512019 @default.
- W2954315051 countsByYear W29543150512021 @default.
- W2954315051 countsByYear W29543150512022 @default.
- W2954315051 countsByYear W29543150512023 @default.
- W2954315051 crossrefType "book-chapter" @default.
- W2954315051 hasAuthorship W2954315051A5022780651 @default.
- W2954315051 hasAuthorship W2954315051A5049153994 @default.
- W2954315051 hasAuthorship W2954315051A5077619272 @default.
- W2954315051 hasAuthorship W2954315051A5088974635 @default.
- W2954315051 hasConcept C108583219 @default.
- W2954315051 hasConcept C11413529 @default.
- W2954315051 hasConcept C124101348 @default.
- W2954315051 hasConcept C138885662 @default.
- W2954315051 hasConcept C154945302 @default.
- W2954315051 hasConcept C158525013 @default.
- W2954315051 hasConcept C33954974 @default.
- W2954315051 hasConcept C41008148 @default.
- W2954315051 hasConcept C41895202 @default.
- W2954315051 hasConcept C45374587 @default.
- W2954315051 hasConcept C75684735 @default.
- W2954315051 hasConceptScore W2954315051C108583219 @default.
- W2954315051 hasConceptScore W2954315051C11413529 @default.
- W2954315051 hasConceptScore W2954315051C124101348 @default.
- W2954315051 hasConceptScore W2954315051C138885662 @default.
- W2954315051 hasConceptScore W2954315051C154945302 @default.
- W2954315051 hasConceptScore W2954315051C158525013 @default.
- W2954315051 hasConceptScore W2954315051C33954974 @default.
- W2954315051 hasConceptScore W2954315051C41008148 @default.
- W2954315051 hasConceptScore W2954315051C41895202 @default.
- W2954315051 hasConceptScore W2954315051C45374587 @default.
- W2954315051 hasConceptScore W2954315051C75684735 @default.
- W2954315051 hasLocation W29543150511 @default.
- W2954315051 hasOpenAccess W2954315051 @default.
- W2954315051 hasPrimaryLocation W29543150511 @default.
- W2954315051 hasRelatedWork W2125143533 @default.