Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954315061> ?p ?o ?g. }
- W2954315061 endingPage "117" @default.
- W2954315061 startingPage "108" @default.
- W2954315061 abstract "Text categorization, or text classification, is one of key tasks for representing the semantic information of documents. Traditional deep leaning models for text categorization are generally time-consuming with large-sized datasets due to slow convergence rate. In this paper, we propose a character-level model for short text classification with a combination of convolutional neural network (CNN), gated recurrent unit (GRU) and highway network (HN), which can capture both the global and the local textual semantics while having a tractable computational complexity. In addition, error minimization extreme learning machine (EM-ELM) is incorporated into the proposed model to improve the classification accuracy further. Extensive experiments show that our approach achieves the state-of-the-art performance when the hybrid model based on EM-ELM is trained using large-sized datasets." @default.
- W2954315061 created "2019-07-12" @default.
- W2954315061 creator A5014528965 @default.
- W2954315061 creator A5025003548 @default.
- W2954315061 creator A5025079159 @default.
- W2954315061 date "2019-06-30" @default.
- W2954315061 modified "2023-09-27" @default.
- W2954315061 title "Character-Level Hybrid Convolutional and Recurrent Neural Network for Fast Text Categorization" @default.
- W2954315061 cites W1133916940 @default.
- W2954315061 cites W1832693441 @default.
- W2954315061 cites W1899794420 @default.
- W2954315061 cites W2014802425 @default.
- W2954315061 cites W2028140375 @default.
- W2954315061 cites W2070753207 @default.
- W2954315061 cites W2096987757 @default.
- W2954315061 cites W2117130368 @default.
- W2954315061 cites W2119466907 @default.
- W2954315061 cites W2157331557 @default.
- W2954315061 cites W2192604218 @default.
- W2954315061 cites W2217433794 @default.
- W2954315061 cites W2250966211 @default.
- W2954315061 cites W2279689406 @default.
- W2954315061 cites W2306941105 @default.
- W2954315061 cites W2466376234 @default.
- W2954315061 cites W2547080737 @default.
- W2954315061 cites W2584561145 @default.
- W2954315061 cites W2599743206 @default.
- W2954315061 cites W2951829787 @default.
- W2954315061 cites W2963355447 @default.
- W2954315061 cites W2963921497 @default.
- W2954315061 doi "https://doi.org/10.1007/978-3-030-23307-5_12" @default.
- W2954315061 hasPublicationYear "2019" @default.
- W2954315061 type Work @default.
- W2954315061 sameAs 2954315061 @default.
- W2954315061 citedByCount "2" @default.
- W2954315061 countsByYear W29543150612021 @default.
- W2954315061 crossrefType "book-chapter" @default.
- W2954315061 hasAuthorship W2954315061A5014528965 @default.
- W2954315061 hasAuthorship W2954315061A5025003548 @default.
- W2954315061 hasAuthorship W2954315061A5025079159 @default.
- W2954315061 hasConcept C108583219 @default.
- W2954315061 hasConcept C119857082 @default.
- W2954315061 hasConcept C147168706 @default.
- W2954315061 hasConcept C153180895 @default.
- W2954315061 hasConcept C154945302 @default.
- W2954315061 hasConcept C184337299 @default.
- W2954315061 hasConcept C199360897 @default.
- W2954315061 hasConcept C204321447 @default.
- W2954315061 hasConcept C2524010 @default.
- W2954315061 hasConcept C26517878 @default.
- W2954315061 hasConcept C2780861071 @default.
- W2954315061 hasConcept C2986744138 @default.
- W2954315061 hasConcept C33923547 @default.
- W2954315061 hasConcept C38652104 @default.
- W2954315061 hasConcept C41008148 @default.
- W2954315061 hasConcept C50644808 @default.
- W2954315061 hasConcept C81363708 @default.
- W2954315061 hasConcept C94124525 @default.
- W2954315061 hasConceptScore W2954315061C108583219 @default.
- W2954315061 hasConceptScore W2954315061C119857082 @default.
- W2954315061 hasConceptScore W2954315061C147168706 @default.
- W2954315061 hasConceptScore W2954315061C153180895 @default.
- W2954315061 hasConceptScore W2954315061C154945302 @default.
- W2954315061 hasConceptScore W2954315061C184337299 @default.
- W2954315061 hasConceptScore W2954315061C199360897 @default.
- W2954315061 hasConceptScore W2954315061C204321447 @default.
- W2954315061 hasConceptScore W2954315061C2524010 @default.
- W2954315061 hasConceptScore W2954315061C26517878 @default.
- W2954315061 hasConceptScore W2954315061C2780861071 @default.
- W2954315061 hasConceptScore W2954315061C2986744138 @default.
- W2954315061 hasConceptScore W2954315061C33923547 @default.
- W2954315061 hasConceptScore W2954315061C38652104 @default.
- W2954315061 hasConceptScore W2954315061C41008148 @default.
- W2954315061 hasConceptScore W2954315061C50644808 @default.
- W2954315061 hasConceptScore W2954315061C81363708 @default.
- W2954315061 hasConceptScore W2954315061C94124525 @default.
- W2954315061 hasLocation W29543150611 @default.
- W2954315061 hasOpenAccess W2954315061 @default.
- W2954315061 hasPrimaryLocation W29543150611 @default.
- W2954315061 hasRelatedWork W2734389934 @default.
- W2954315061 hasRelatedWork W2769830580 @default.
- W2954315061 hasRelatedWork W2798754355 @default.
- W2954315061 hasRelatedWork W2802102212 @default.
- W2954315061 hasRelatedWork W2889420213 @default.
- W2954315061 hasRelatedWork W2893235790 @default.
- W2954315061 hasRelatedWork W2907269905 @default.
- W2954315061 hasRelatedWork W2924354574 @default.
- W2954315061 hasRelatedWork W2971900328 @default.
- W2954315061 hasRelatedWork W2977540023 @default.
- W2954315061 hasRelatedWork W3009481995 @default.
- W2954315061 hasRelatedWork W3036728865 @default.
- W2954315061 hasRelatedWork W3084574658 @default.
- W2954315061 hasRelatedWork W3101159446 @default.
- W2954315061 hasRelatedWork W3102498271 @default.
- W2954315061 hasRelatedWork W3119439212 @default.
- W2954315061 hasRelatedWork W3132408618 @default.
- W2954315061 hasRelatedWork W3132776539 @default.
- W2954315061 hasRelatedWork W3168990017 @default.