Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954327103> ?p ?o ?g. }
- W2954327103 abstract "Code smells represent poor implementation choices performed by developers when enhancing source code. Their negative impact on source code maintainability and comprehensibility has been widely shown in the past and several techniques to automatically detect them have been devised. Most of these techniques are based on heuristics, namely they compute a set of code metrics and combine them by creating detection rules; while they have a reasonable accuracy, a recent trend is represented by the use of machine learning where code metrics are used as predictors of the smelliness of code artefacts. Despite the recent advances in the field, there is still a noticeable lack of knowledge of whether machine learning can actually be more accurate than traditional heuristic-based approaches. To fill this gap, in this paper we propose a large-scale study to empirically compare the performance of heuristic-based and machine-learning-based techniques for metric-based code smell detection. We consider five code smell types and compare machine learning models with DECOR, a state-of-the-art heuristic-based approach. Key findings emphasize the need of further research aimed at improving the effectiveness of both machine learning and heuristic approaches for code smell detection: while DECOR generally achieves better performance than a machine learning baseline, its precision is still too low to make it usable in practice." @default.
- W2954327103 created "2019-07-12" @default.
- W2954327103 creator A5021041082 @default.
- W2954327103 creator A5026071200 @default.
- W2954327103 creator A5033738898 @default.
- W2954327103 creator A5072127726 @default.
- W2954327103 date "2019-05-01" @default.
- W2954327103 modified "2023-10-06" @default.
- W2954327103 title "Comparing Heuristic and Machine Learning Approaches for Metric-Based Code Smell Detection" @default.
- W2954327103 cites W121890015 @default.
- W2954327103 cites W1524601730 @default.
- W2954327103 cites W1670263352 @default.
- W2954327103 cites W1963598945 @default.
- W2954327103 cites W1964962870 @default.
- W2954327103 cites W1965658570 @default.
- W2954327103 cites W1970029789 @default.
- W2954327103 cites W1971146998 @default.
- W2954327103 cites W1974655094 @default.
- W2954327103 cites W1978777139 @default.
- W2954327103 cites W1978813754 @default.
- W2954327103 cites W1982871693 @default.
- W2954327103 cites W1986136726 @default.
- W2954327103 cites W1988997230 @default.
- W2954327103 cites W1989354793 @default.
- W2954327103 cites W1991172342 @default.
- W2954327103 cites W2001730430 @default.
- W2954327103 cites W2008593255 @default.
- W2954327103 cites W2014418158 @default.
- W2954327103 cites W2020458104 @default.
- W2954327103 cites W2034400602 @default.
- W2954327103 cites W2043328610 @default.
- W2954327103 cites W2045749853 @default.
- W2954327103 cites W2046276611 @default.
- W2954327103 cites W2047573930 @default.
- W2954327103 cites W2047971903 @default.
- W2954327103 cites W2057433090 @default.
- W2954327103 cites W2071983648 @default.
- W2954327103 cites W2076804800 @default.
- W2954327103 cites W2087450238 @default.
- W2954327103 cites W2089910927 @default.
- W2954327103 cites W2100925270 @default.
- W2954327103 cites W2108086273 @default.
- W2954327103 cites W2112081648 @default.
- W2954327103 cites W2113322762 @default.
- W2954327103 cites W2113867035 @default.
- W2954327103 cites W2115685157 @default.
- W2954327103 cites W2119811370 @default.
- W2954327103 cites W2128581098 @default.
- W2954327103 cites W2128802947 @default.
- W2954327103 cites W2130509252 @default.
- W2954327103 cites W2140504739 @default.
- W2954327103 cites W2140964565 @default.
- W2954327103 cites W2141069252 @default.
- W2954327103 cites W2144716614 @default.
- W2954327103 cites W2144854572 @default.
- W2954327103 cites W2147881688 @default.
- W2954327103 cites W2148143831 @default.
- W2954327103 cites W2149963636 @default.
- W2954327103 cites W2151295763 @default.
- W2954327103 cites W2153635508 @default.
- W2954327103 cites W2170860398 @default.
- W2954327103 cites W2212732160 @default.
- W2954327103 cites W2238078713 @default.
- W2954327103 cites W2245188050 @default.
- W2954327103 cites W2395052532 @default.
- W2954327103 cites W2402199355 @default.
- W2954327103 cites W2403793401 @default.
- W2954327103 cites W2465318792 @default.
- W2954327103 cites W2470841477 @default.
- W2954327103 cites W2508117657 @default.
- W2954327103 cites W2509415277 @default.
- W2954327103 cites W2511803001 @default.
- W2954327103 cites W2548549162 @default.
- W2954327103 cites W2560646185 @default.
- W2954327103 cites W2576115447 @default.
- W2954327103 cites W2608628736 @default.
- W2954327103 cites W2725758135 @default.
- W2954327103 cites W2742512005 @default.
- W2954327103 cites W2752705533 @default.
- W2954327103 cites W2767787791 @default.
- W2954327103 cites W2789476037 @default.
- W2954327103 cites W2796404405 @default.
- W2954327103 cites W2908058835 @default.
- W2954327103 cites W2911964244 @default.
- W2954327103 cites W2918249627 @default.
- W2954327103 cites W2963548617 @default.
- W2954327103 cites W2998678832 @default.
- W2954327103 cites W4241233223 @default.
- W2954327103 cites W4252684946 @default.
- W2954327103 cites W4253136463 @default.
- W2954327103 cites W649920412 @default.
- W2954327103 doi "https://doi.org/10.1109/icpc.2019.00023" @default.
- W2954327103 hasPublicationYear "2019" @default.
- W2954327103 type Work @default.
- W2954327103 sameAs 2954327103 @default.
- W2954327103 citedByCount "54" @default.
- W2954327103 countsByYear W29543271032019 @default.
- W2954327103 countsByYear W29543271032020 @default.
- W2954327103 countsByYear W29543271032021 @default.
- W2954327103 countsByYear W29543271032022 @default.