Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954338922> ?p ?o ?g. }
- W2954338922 endingPage "855" @default.
- W2954338922 startingPage "832" @default.
- W2954338922 abstract "Aerodynamic data can be obtained from different sources, which vary in fidelity, availability and cost. As the fidelity of data increases, the cost of data acquisition usually becomes higher. Therefore, to obtain accurate unsteady aerodynamic model with very low cost and the desired level of accuracy, this paper proposes an unsteady multi-fidelity aerodynamic modeling framework. The approach integrates ideas from data fusion, multi-fidelity modeling, nonlinear system identification and machine learning. Data fusion reduces the total cost of data generation for model construction, while multi-fidelity modeling with a nonlinear autoregressive with exogenous input (NARX) description provides a general framework for unsteady aerodynamics. The correction term from the low-fidelity model to the high-fidelity result is then identified by a machine learning approach, i.e., a multi-kernel neural network. To validate the proposed method, unsteady aerodynamics of a NACA0012 airfoil pitching at Mach number 0.8 is modeled. The high-fidelity data is obtained from a Navier–Stokes-equation-based solver, while the low-fidelity solution is taken from an Euler-equation-based flow solver. The main difference between two types of data is that the high-fidelity solution takes into account the viscous effect, while the low-fidelity solution is based the invisicid flow assumption. Besides, to mimic the practical situation where high-fidelity data are limited in amount and diversity due to high cost (e.g., the experimental condition), only three high-fidelity unsteady aerodynamic solutions from harmonic motion are available. After performing a multi-fidelity analysis on a typical harmonic motion, the model is applied to the prediction of aerodynamic loads from either new harmonic motions or random motions. The multi-fidelity model shows a good agreement with the high-fidelity solution, indicating that by using only a few high-fidelity data and a low-fidelity model, high-fidelity results can be accurately reproduced. Furthermore, the model convergence with respect to increasing training data, and the comparison with a single high-fidelity reduced-order model (ROM) are also studied. The proposed approach becomes more accurate as the number of high-fidelity samples increases, and outperforms a single aerodynamic ROM in most of test cases. Compared with ROM method, additional computational cost for the proposed approach is small, therefore the total time cost of model training is still low." @default.
- W2954338922 created "2019-07-12" @default.
- W2954338922 creator A5003289067 @default.
- W2954338922 creator A5078810101 @default.
- W2954338922 date "2019-12-01" @default.
- W2954338922 modified "2023-10-17" @default.
- W2954338922 title "Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils" @default.
- W2954338922 cites W1200475737 @default.
- W2954338922 cites W1772311894 @default.
- W2954338922 cites W1954793758 @default.
- W2954338922 cites W1966763784 @default.
- W2954338922 cites W1969675646 @default.
- W2954338922 cites W1977046327 @default.
- W2954338922 cites W1983690695 @default.
- W2954338922 cites W1991147432 @default.
- W2954338922 cites W2001393175 @default.
- W2954338922 cites W2011550024 @default.
- W2954338922 cites W2014356541 @default.
- W2954338922 cites W2016977813 @default.
- W2954338922 cites W2021207726 @default.
- W2954338922 cites W2041310345 @default.
- W2954338922 cites W2041344639 @default.
- W2954338922 cites W2054325691 @default.
- W2954338922 cites W2060447946 @default.
- W2954338922 cites W2061163110 @default.
- W2954338922 cites W2068980644 @default.
- W2954338922 cites W2073505808 @default.
- W2954338922 cites W2074919290 @default.
- W2954338922 cites W2076493855 @default.
- W2954338922 cites W2083473180 @default.
- W2954338922 cites W2092398714 @default.
- W2954338922 cites W2098082901 @default.
- W2954338922 cites W2106607398 @default.
- W2954338922 cites W2110418811 @default.
- W2954338922 cites W2112823474 @default.
- W2954338922 cites W2113292457 @default.
- W2954338922 cites W2113430135 @default.
- W2954338922 cites W2127129738 @default.
- W2954338922 cites W2128884148 @default.
- W2954338922 cites W2131908956 @default.
- W2954338922 cites W2137290426 @default.
- W2954338922 cites W2142635246 @default.
- W2954338922 cites W2147836594 @default.
- W2954338922 cites W2148889163 @default.
- W2954338922 cites W2159271996 @default.
- W2954338922 cites W2164511061 @default.
- W2954338922 cites W2164954534 @default.
- W2954338922 cites W2193006036 @default.
- W2954338922 cites W2194513159 @default.
- W2954338922 cites W2217648817 @default.
- W2954338922 cites W2221579883 @default.
- W2954338922 cites W2305253642 @default.
- W2954338922 cites W2312257624 @default.
- W2954338922 cites W2334128557 @default.
- W2954338922 cites W2346778841 @default.
- W2954338922 cites W2425976698 @default.
- W2954338922 cites W2443699305 @default.
- W2954338922 cites W2462427028 @default.
- W2954338922 cites W2490045648 @default.
- W2954338922 cites W2499875932 @default.
- W2954338922 cites W2554748665 @default.
- W2954338922 cites W2559946728 @default.
- W2954338922 cites W2566507084 @default.
- W2954338922 cites W2583438505 @default.
- W2954338922 cites W2604127164 @default.
- W2954338922 cites W2607061202 @default.
- W2954338922 cites W2608845957 @default.
- W2954338922 cites W2728190992 @default.
- W2954338922 cites W2766298346 @default.
- W2954338922 cites W2782035047 @default.
- W2954338922 cites W2810284886 @default.
- W2954338922 cites W2811395263 @default.
- W2954338922 cites W2888392596 @default.
- W2954338922 cites W2901052108 @default.
- W2954338922 cites W2901359814 @default.
- W2954338922 doi "https://doi.org/10.1016/j.apm.2019.06.034" @default.
- W2954338922 hasPublicationYear "2019" @default.
- W2954338922 type Work @default.
- W2954338922 sameAs 2954338922 @default.
- W2954338922 citedByCount "29" @default.
- W2954338922 countsByYear W29543389222020 @default.
- W2954338922 countsByYear W29543389222021 @default.
- W2954338922 countsByYear W29543389222022 @default.
- W2954338922 countsByYear W29543389222023 @default.
- W2954338922 crossrefType "journal-article" @default.
- W2954338922 hasAuthorship W2954338922A5003289067 @default.
- W2954338922 hasAuthorship W2954338922A5078810101 @default.
- W2954338922 hasConcept C112124176 @default.
- W2954338922 hasConcept C121332964 @default.
- W2954338922 hasConcept C127413603 @default.
- W2954338922 hasConcept C13393347 @default.
- W2954338922 hasConcept C146978453 @default.
- W2954338922 hasConcept C154945302 @default.
- W2954338922 hasConcept C158622935 @default.
- W2954338922 hasConcept C199360897 @default.
- W2954338922 hasConcept C2775924081 @default.
- W2954338922 hasConcept C2776459999 @default.
- W2954338922 hasConcept C2777834885 @default.