Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954413000> ?p ?o ?g. }
- W2954413000 abstract "Next-generation wireless networks must support ultra-reliable, low-latency communication and intelligently manage a massive number of Internet of Things (IoT) devices in real-time, within a highly dynamic environment. This need for stringent communication quality-of-service (QoS) requirements as well as mobile edge and core intelligence can only be realized by integrating fundamental notions of artificial intelligence (AI) and machine learning across the wireless infrastructure and end-user devices. In this context, this paper provides a comprehensive tutorial that introduces the main concepts of machine learning, in general, and artificial neural networks (ANNs), in particular, and their potential applications in wireless communications. For this purpose, we present a comprehensive overview on a number of key types of neural networks that include feed-forward, recurrent, spiking, and deep neural networks. For each type of neural network, we present the basic architecture and training procedure, as well as the associated challenges and opportunities. Then, we provide an in-depth overview on the variety of wireless communication problems that can be addressed using ANNs, ranging from communication using unmanned aerial vehicles to virtual reality and edge caching.For each individual application, we present the main motivation for using ANNs along with the associated challenges while also providing a detailed example for a use case scenario and outlining future works that can be addressed using ANNs. In a nutshell, this article constitutes one of the first holistic tutorials on the development of machine learning techniques tailored to the needs of future wireless networks." @default.
- W2954413000 created "2019-07-12" @default.
- W2954413000 creator A5009078493 @default.
- W2954413000 creator A5020266992 @default.
- W2954413000 creator A5024108653 @default.
- W2954413000 creator A5056145687 @default.
- W2954413000 creator A5072241033 @default.
- W2954413000 date "2017-10-08" @default.
- W2954413000 modified "2023-10-16" @default.
- W2954413000 title "Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial" @default.
- W2954413000 cites W1493971325 @default.
- W2954413000 cites W1505958606 @default.
- W2954413000 cites W1508065755 @default.
- W2954413000 cites W1513379583 @default.
- W2954413000 cites W1522301498 @default.
- W2954413000 cites W1523640856 @default.
- W2954413000 cites W1546756991 @default.
- W2954413000 cites W1567512734 @default.
- W2954413000 cites W1571824132 @default.
- W2954413000 cites W1575739010 @default.
- W2954413000 cites W1578352865 @default.
- W2954413000 cites W1585527901 @default.
- W2954413000 cites W1595483645 @default.
- W2954413000 cites W1603438237 @default.
- W2954413000 cites W1689711448 @default.
- W2954413000 cites W1726370773 @default.
- W2954413000 cites W1802825888 @default.
- W2954413000 cites W1825077972 @default.
- W2954413000 cites W1835317407 @default.
- W2954413000 cites W1851970720 @default.
- W2954413000 cites W1904504745 @default.
- W2954413000 cites W1906224694 @default.
- W2954413000 cites W1926086117 @default.
- W2954413000 cites W1964839117 @default.
- W2954413000 cites W1973403654 @default.
- W2954413000 cites W1974747474 @default.
- W2954413000 cites W1980613493 @default.
- W2954413000 cites W1983681337 @default.
- W2954413000 cites W1984205520 @default.
- W2954413000 cites W1985940938 @default.
- W2954413000 cites W1986964674 @default.
- W2954413000 cites W1988455886 @default.
- W2954413000 cites W1991607248 @default.
- W2954413000 cites W1994080576 @default.
- W2954413000 cites W1994984174 @default.
- W2954413000 cites W1996940434 @default.
- W2954413000 cites W1997858594 @default.
- W2954413000 cites W1998284588 @default.
- W2954413000 cites W2004802883 @default.
- W2954413000 cites W2006572541 @default.
- W2954413000 cites W2010884349 @default.
- W2954413000 cites W202614145 @default.
- W2954413000 cites W2026319679 @default.
- W2954413000 cites W2036317923 @default.
- W2954413000 cites W2051773775 @default.
- W2954413000 cites W2054692642 @default.
- W2954413000 cites W2064675550 @default.
- W2954413000 cites W2065320413 @default.
- W2954413000 cites W2076063813 @default.
- W2954413000 cites W2079048646 @default.
- W2954413000 cites W2081411433 @default.
- W2954413000 cites W2083637157 @default.
- W2954413000 cites W2086573699 @default.
- W2954413000 cites W2091005538 @default.
- W2954413000 cites W2097281067 @default.
- W2954413000 cites W2099231026 @default.
- W2954413000 cites W2099388379 @default.
- W2954413000 cites W2103179919 @default.
- W2954413000 cites W2103972037 @default.
- W2954413000 cites W2107726111 @default.
- W2954413000 cites W2107968230 @default.
- W2954413000 cites W2111032591 @default.
- W2954413000 cites W2111406701 @default.
- W2954413000 cites W2113442785 @default.
- W2954413000 cites W2114475956 @default.
- W2954413000 cites W2116021467 @default.
- W2954413000 cites W2117130368 @default.
- W2954413000 cites W2118020653 @default.
- W2954413000 cites W2118706537 @default.
- W2954413000 cites W2119717200 @default.
- W2954413000 cites W2120475512 @default.
- W2954413000 cites W2122053769 @default.
- W2954413000 cites W2123820663 @default.
- W2954413000 cites W2123850191 @default.
- W2954413000 cites W2124619563 @default.
- W2954413000 cites W2124776405 @default.
- W2954413000 cites W2124972241 @default.
- W2954413000 cites W2126930260 @default.
- W2954413000 cites W2127221278 @default.
- W2954413000 cites W2128519534 @default.
- W2954413000 cites W2132344484 @default.
- W2954413000 cites W2134295053 @default.
- W2954413000 cites W2134342468 @default.
- W2954413000 cites W2135194391 @default.
- W2954413000 cites W2140108329 @default.
- W2954413000 cites W2142152348 @default.
- W2954413000 cites W2145286644 @default.
- W2954413000 cites W2145339207 @default.
- W2954413000 cites W2146502635 @default.
- W2954413000 cites W2147101007 @default.