Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954429703> ?p ?o ?g. }
- W2954429703 endingPage "293" @default.
- W2954429703 startingPage "283" @default.
- W2954429703 abstract "Urban intersections in India constitute a significant share of pedestrian fatalities. However, model-based prediction of pedestrian fatalities is still in a nascent stage in India. This study proposes an artificial neural network (ANN) technique to develop a pedestrian fatal crash frequency model at the intersection level. In this study, three activation functions are used along with four different learning algorithms to build different combinations of ANN models. In each of these combinations, the number of neurons in the hidden layer is varied by trial and error method, and the best results are considered. In this way, 12 sets of pedestrian fatal crash predictive models are developed. Out of these, Bayesian Regularization Neural Network consisting of 13 neurons in the hidden layer with 'hyperbolic tangent-sigmoid' activation function is found to be the best-fit model. Finally, based on sensitivity analysis, it is found that the 'approaching speed' of the motorized vehicle has the most significant influence on the fatal pedestrian crashes. 'Logarithm of average daily traffic' (ADT) volume is found to be the second most sensitive variable. Pedestrian-vehicular interaction concerning 'pedestrian-vehicular volume ratio' and lack of 'accessibility of pedestrian cross-walk' are found to be approximately as sensible as 'logarithm of ADT'." @default.
- W2954429703 created "2019-07-12" @default.
- W2954429703 creator A5006093808 @default.
- W2954429703 creator A5024859042 @default.
- W2954429703 creator A5082004862 @default.
- W2954429703 date "2019-07-03" @default.
- W2954429703 modified "2023-09-26" @default.
- W2954429703 title "Development of pedestrian crash prediction model for a developing country using artificial neural network" @default.
- W2954429703 cites W1802352466 @default.
- W2954429703 cites W1950018093 @default.
- W2954429703 cites W1964049816 @default.
- W2954429703 cites W1964259136 @default.
- W2954429703 cites W1965741189 @default.
- W2954429703 cites W1966398873 @default.
- W2954429703 cites W1966822777 @default.
- W2954429703 cites W1966953246 @default.
- W2954429703 cites W1970113749 @default.
- W2954429703 cites W1973554410 @default.
- W2954429703 cites W1987193935 @default.
- W2954429703 cites W1987714499 @default.
- W2954429703 cites W1990611565 @default.
- W2954429703 cites W1999889505 @default.
- W2954429703 cites W2000972992 @default.
- W2954429703 cites W2005961628 @default.
- W2954429703 cites W2011118977 @default.
- W2954429703 cites W2015876297 @default.
- W2954429703 cites W2023827588 @default.
- W2954429703 cites W2031748801 @default.
- W2954429703 cites W2036359064 @default.
- W2954429703 cites W2038175992 @default.
- W2954429703 cites W2040259156 @default.
- W2954429703 cites W2052369572 @default.
- W2954429703 cites W2052898802 @default.
- W2954429703 cites W2053531352 @default.
- W2954429703 cites W2053776921 @default.
- W2954429703 cites W2059386649 @default.
- W2954429703 cites W2066051003 @default.
- W2954429703 cites W2068035155 @default.
- W2954429703 cites W2068046269 @default.
- W2954429703 cites W2076261376 @default.
- W2954429703 cites W2076978163 @default.
- W2954429703 cites W2077145118 @default.
- W2954429703 cites W2084371789 @default.
- W2954429703 cites W2085309210 @default.
- W2954429703 cites W2095934102 @default.
- W2954429703 cites W2096950984 @default.
- W2954429703 cites W2149279132 @default.
- W2954429703 cites W2159926547 @default.
- W2954429703 cites W2160000110 @default.
- W2954429703 cites W2160093842 @default.
- W2954429703 cites W2160608130 @default.
- W2954429703 cites W2161309151 @default.
- W2954429703 cites W2161850932 @default.
- W2954429703 cites W2164517341 @default.
- W2954429703 cites W2165456507 @default.
- W2954429703 cites W2285770651 @default.
- W2954429703 cites W2301702392 @default.
- W2954429703 cites W2318731979 @default.
- W2954429703 cites W2520451768 @default.
- W2954429703 cites W2626745470 @default.
- W2954429703 cites W2758585757 @default.
- W2954429703 cites W2775763833 @default.
- W2954429703 cites W2786599895 @default.
- W2954429703 cites W2931849485 @default.
- W2954429703 cites W2953598876 @default.
- W2954429703 doi "https://doi.org/10.1080/17457300.2019.1627463" @default.
- W2954429703 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31271110" @default.
- W2954429703 hasPublicationYear "2019" @default.
- W2954429703 type Work @default.
- W2954429703 sameAs 2954429703 @default.
- W2954429703 citedByCount "44" @default.
- W2954429703 countsByYear W29544297032020 @default.
- W2954429703 countsByYear W29544297032021 @default.
- W2954429703 countsByYear W29544297032022 @default.
- W2954429703 countsByYear W29544297032023 @default.
- W2954429703 crossrefType "journal-article" @default.
- W2954429703 hasAuthorship W2954429703A5006093808 @default.
- W2954429703 hasAuthorship W2954429703A5024859042 @default.
- W2954429703 hasAuthorship W2954429703A5082004862 @default.
- W2954429703 hasConcept C105795698 @default.
- W2954429703 hasConcept C119857082 @default.
- W2954429703 hasConcept C127413603 @default.
- W2954429703 hasConcept C134306372 @default.
- W2954429703 hasConcept C154945302 @default.
- W2954429703 hasConcept C183469790 @default.
- W2954429703 hasConcept C199360897 @default.
- W2954429703 hasConcept C22212356 @default.
- W2954429703 hasConcept C2777113093 @default.
- W2954429703 hasConcept C3017944768 @default.
- W2954429703 hasConcept C33923547 @default.
- W2954429703 hasConcept C38365724 @default.
- W2954429703 hasConcept C39927690 @default.
- W2954429703 hasConcept C41008148 @default.
- W2954429703 hasConcept C44154836 @default.
- W2954429703 hasConcept C50644808 @default.
- W2954429703 hasConcept C64543145 @default.
- W2954429703 hasConcept C71924100 @default.
- W2954429703 hasConcept C99454951 @default.