Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954438862> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2954438862 endingPage "151" @default.
- W2954438862 startingPage "129" @default.
- W2954438862 abstract "Segmentation of brain tissues from MRI often becomes crucial to properly investigate any region of the brain in order to detect abnormalities. However, the accurate segmentation of the brain tissues is a challenging task as the different tissue regions are usually imprecise, indiscernible, ambiguous, and overlapping. Additionally, different tissue regions are non-linearly separable. Noises and other artifacts may also present in the brain MRI. Therefore, conventional segmentation techniques may not often achieve desired accuracy. To deal those challenges, a robust kernelized rough fuzzy C-means clustering with spatial constraints (KRFCMSC) is proposed in this article for brain tissue segmentation. Here, the brain tissue segmentation from MRI is considered as a clustering of pixels problem. The basic idea behind the proposed technique is the judicious integration of the fuzzy set, rough set, and kernel trick along with spatial constraints (in the form of contextual information) to increase the clustering (segmentation) performance. The use of rough and fuzzy set theory in the clustering process handles the ambiguity, indiscernibility, vagueness and overlappingness of different brain tissue regions. While, the kernel trick increases the chance of linear separability of the complex regions which are otherwise not linearly separable in its original feature space. In order to deal the noisy pixels, here in the clustering process, the spatio-contextual information is introduced from the neighbouring pixels. Experiments are carried out on different real and synthetic benchmark brain MRI datasets (publicly available from Brainweb, and IBSR) without and with added noise. The performance of the proposed method is compared with five other counterpart clustering based segmentation techniques and evaluated using various supervised as well as unsupervised validity indices such as, overall accuracy, precision, recall, kappa, Jaccard, dice, and kernelized Xie-Beni index. Experimental results justify the superiority and robustness of the proposed method over other state-of-the-art methods on both benchmark real life and synthetic brain MRI datasets with and without added noise. Statistical significance of the better segmentation accuracy can be confirmed from the paired t-test results in favour of the proposed method compared to other counterpart methods." @default.
- W2954438862 created "2019-07-12" @default.
- W2954438862 creator A5029440675 @default.
- W2954438862 creator A5041083834 @default.
- W2954438862 date "2019-10-01" @default.
- W2954438862 modified "2023-09-24" @default.
- W2954438862 title "Brain tissue segmentation using improved kernelized rough-fuzzy C-means with spatio-contextual information from MRI" @default.
- W2954438862 cites W1513494614 @default.
- W2954438862 cites W1749444127 @default.
- W2954438862 cites W1815337875 @default.
- W2954438862 cites W1967551258 @default.
- W2954438862 cites W1998170352 @default.
- W2954438862 cites W2008101963 @default.
- W2954438862 cites W2012216972 @default.
- W2954438862 cites W2017404123 @default.
- W2954438862 cites W2047568922 @default.
- W2954438862 cites W2054902886 @default.
- W2954438862 cites W2059784307 @default.
- W2954438862 cites W2063136119 @default.
- W2954438862 cites W2063552084 @default.
- W2954438862 cites W2091336043 @default.
- W2954438862 cites W2099801199 @default.
- W2954438862 cites W2108843657 @default.
- W2954438862 cites W2108859253 @default.
- W2954438862 cites W2113535566 @default.
- W2954438862 cites W2115242586 @default.
- W2954438862 cites W2121371800 @default.
- W2954438862 cites W2123498585 @default.
- W2954438862 cites W2132140814 @default.
- W2954438862 cites W2132987911 @default.
- W2954438862 cites W2133755666 @default.
- W2954438862 cites W2156992893 @default.
- W2954438862 cites W2159965356 @default.
- W2954438862 cites W2162266621 @default.
- W2954438862 cites W2162630772 @default.
- W2954438862 cites W2163446914 @default.
- W2954438862 cites W2167014701 @default.
- W2954438862 cites W2168668658 @default.
- W2954438862 cites W2259316796 @default.
- W2954438862 cites W2340076495 @default.
- W2954438862 cites W2477002788 @default.
- W2954438862 cites W3101749733 @default.
- W2954438862 cites W4211007335 @default.
- W2954438862 cites W4255833381 @default.
- W2954438862 doi "https://doi.org/10.1016/j.mri.2019.06.010" @default.
- W2954438862 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31247252" @default.
- W2954438862 hasPublicationYear "2019" @default.
- W2954438862 type Work @default.
- W2954438862 sameAs 2954438862 @default.
- W2954438862 citedByCount "12" @default.
- W2954438862 countsByYear W29544388622020 @default.
- W2954438862 countsByYear W29544388622021 @default.
- W2954438862 countsByYear W29544388622022 @default.
- W2954438862 crossrefType "journal-article" @default.
- W2954438862 hasAuthorship W2954438862A5029440675 @default.
- W2954438862 hasAuthorship W2954438862A5041083834 @default.
- W2954438862 hasConcept C114614502 @default.
- W2954438862 hasConcept C153180895 @default.
- W2954438862 hasConcept C154945302 @default.
- W2954438862 hasConcept C160633673 @default.
- W2954438862 hasConcept C17212007 @default.
- W2954438862 hasConcept C33923547 @default.
- W2954438862 hasConcept C41008148 @default.
- W2954438862 hasConcept C58166 @default.
- W2954438862 hasConcept C73555534 @default.
- W2954438862 hasConcept C74193536 @default.
- W2954438862 hasConcept C89600930 @default.
- W2954438862 hasConceptScore W2954438862C114614502 @default.
- W2954438862 hasConceptScore W2954438862C153180895 @default.
- W2954438862 hasConceptScore W2954438862C154945302 @default.
- W2954438862 hasConceptScore W2954438862C160633673 @default.
- W2954438862 hasConceptScore W2954438862C17212007 @default.
- W2954438862 hasConceptScore W2954438862C33923547 @default.
- W2954438862 hasConceptScore W2954438862C41008148 @default.
- W2954438862 hasConceptScore W2954438862C58166 @default.
- W2954438862 hasConceptScore W2954438862C73555534 @default.
- W2954438862 hasConceptScore W2954438862C74193536 @default.
- W2954438862 hasConceptScore W2954438862C89600930 @default.
- W2954438862 hasLocation W29544388621 @default.
- W2954438862 hasLocation W29544388622 @default.
- W2954438862 hasOpenAccess W2954438862 @default.
- W2954438862 hasPrimaryLocation W29544388621 @default.
- W2954438862 hasRelatedWork W2033914206 @default.
- W2954438862 hasRelatedWork W2041098143 @default.
- W2954438862 hasRelatedWork W2090093270 @default.
- W2954438862 hasRelatedWork W2110459882 @default.
- W2954438862 hasRelatedWork W2136485282 @default.
- W2954438862 hasRelatedWork W2146076056 @default.
- W2954438862 hasRelatedWork W2358941527 @default.
- W2954438862 hasRelatedWork W2394327295 @default.
- W2954438862 hasRelatedWork W2546871836 @default.
- W2954438862 hasRelatedWork W2556490192 @default.
- W2954438862 hasVolume "62" @default.
- W2954438862 isParatext "false" @default.
- W2954438862 isRetracted "false" @default.
- W2954438862 magId "2954438862" @default.
- W2954438862 workType "article" @default.