Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954444967> ?p ?o ?g. }
- W2954444967 endingPage "254" @default.
- W2954444967 startingPage "238" @default.
- W2954444967 abstract "Gene expression dataset contains a small number of tissues and thousands or tens of thousands of noisy and redundant genes. This can lead to possibly overfitting and curse of dimensionality or even complete failure in the analysis of microarray. It can deteriorate the capability of the classification algorithms and also increase the computational burden. To overcome these challenges, in this study, we proposed a new hybrid wrapper approach to determine the optimal gene subsets from gene expression profiling. This proposed approach is a combination of Teaching Learning-based Optimization (TLBO) and Simulated Annealing (SA) algorithm, called TLBOSA which can help to reveal the hidden patterns of tumors and enhance the interpretability of the selected genes. The proposed method comprises two steps. In the first step, Correlation-based Feature Selection (CFS) is applied to select subsets of optimal genes and filter the redundant genes from the biological datasets. In the second step, simulated annealing is incorporated with the TLBO algorithm, and used to increase the solution quality after each iteration of TLBO algorithm. It can also identify the subset of the most informative genes that can contribute to the accurate detection of cancer. A new encoding scheme is also introduced to transform the continuous version of TLBOSA to binary. It utilizes Support Vector Machine (SVM) classifier as a fitness function to select biomarkers that can classify biological tissues of binary and multi-class cancers. The performance of the proposed approach is evaluated on ten sets of microarray data and compared with well-known wrapper methods in the literature. Experimental results and statistical analysis demonstrate that the proposed method has significantly selected discriminating input genes and achieved high classification accuracy. Specifically, it achieves high prediction accuracy on Small-Blue-Round-Cell Tumour (SBRCT) data at 99.91% with 05 gene subsets." @default.
- W2954444967 created "2019-07-12" @default.
- W2954444967 creator A5011505344 @default.
- W2954444967 creator A5025712243 @default.
- W2954444967 creator A5082277481 @default.
- W2954444967 date "2019-11-01" @default.
- W2954444967 modified "2023-10-15" @default.
- W2954444967 title "A new hybrid wrapper TLBO and SA with SVM approach for gene expression data" @default.
- W2954444967 cites W1044919269 @default.
- W2954444967 cites W1418108976 @default.
- W2954444967 cites W1851861644 @default.
- W2954444967 cites W1972785704 @default.
- W2954444967 cites W1985900816 @default.
- W2954444967 cites W1992244337 @default.
- W2954444967 cites W2000621750 @default.
- W2954444967 cites W2012683659 @default.
- W2954444967 cites W2024060531 @default.
- W2954444967 cites W2056582423 @default.
- W2954444967 cites W2057176608 @default.
- W2954444967 cites W2092062437 @default.
- W2954444967 cites W2094023061 @default.
- W2954444967 cites W2096166399 @default.
- W2954444967 cites W2114569237 @default.
- W2954444967 cites W2129473238 @default.
- W2954444967 cites W2169472428 @default.
- W2954444967 cites W2201970036 @default.
- W2954444967 cites W2409523339 @default.
- W2954444967 cites W2414676105 @default.
- W2954444967 cites W2501073021 @default.
- W2954444967 cites W2560046788 @default.
- W2954444967 cites W2560547527 @default.
- W2954444967 cites W2604274035 @default.
- W2954444967 cites W2604772753 @default.
- W2954444967 cites W2605861043 @default.
- W2954444967 cites W2612473079 @default.
- W2954444967 cites W2763523016 @default.
- W2954444967 cites W2767466046 @default.
- W2954444967 cites W2767768852 @default.
- W2954444967 cites W2791315675 @default.
- W2954444967 cites W2792209658 @default.
- W2954444967 cites W2792792517 @default.
- W2954444967 cites W2801546810 @default.
- W2954444967 cites W2889973475 @default.
- W2954444967 cites W2896864616 @default.
- W2954444967 cites W2903672323 @default.
- W2954444967 cites W4239510810 @default.
- W2954444967 doi "https://doi.org/10.1016/j.ins.2019.06.063" @default.
- W2954444967 hasPublicationYear "2019" @default.
- W2954444967 type Work @default.
- W2954444967 sameAs 2954444967 @default.
- W2954444967 citedByCount "57" @default.
- W2954444967 countsByYear W29544449672019 @default.
- W2954444967 countsByYear W29544449672020 @default.
- W2954444967 countsByYear W29544449672021 @default.
- W2954444967 countsByYear W29544449672022 @default.
- W2954444967 countsByYear W29544449672023 @default.
- W2954444967 crossrefType "journal-article" @default.
- W2954444967 hasAuthorship W2954444967A5011505344 @default.
- W2954444967 hasAuthorship W2954444967A5025712243 @default.
- W2954444967 hasAuthorship W2954444967A5082277481 @default.
- W2954444967 hasConcept C104317684 @default.
- W2954444967 hasConcept C111030470 @default.
- W2954444967 hasConcept C119857082 @default.
- W2954444967 hasConcept C12267149 @default.
- W2954444967 hasConcept C124101348 @default.
- W2954444967 hasConcept C126980161 @default.
- W2954444967 hasConcept C148483581 @default.
- W2954444967 hasConcept C150194340 @default.
- W2954444967 hasConcept C153180895 @default.
- W2954444967 hasConcept C154945302 @default.
- W2954444967 hasConcept C176066374 @default.
- W2954444967 hasConcept C22019652 @default.
- W2954444967 hasConcept C2781067378 @default.
- W2954444967 hasConcept C2984324147 @default.
- W2954444967 hasConcept C41008148 @default.
- W2954444967 hasConcept C50644808 @default.
- W2954444967 hasConcept C55493867 @default.
- W2954444967 hasConcept C8415881 @default.
- W2954444967 hasConcept C86803240 @default.
- W2954444967 hasConcept C8880873 @default.
- W2954444967 hasConcept C95623464 @default.
- W2954444967 hasConceptScore W2954444967C104317684 @default.
- W2954444967 hasConceptScore W2954444967C111030470 @default.
- W2954444967 hasConceptScore W2954444967C119857082 @default.
- W2954444967 hasConceptScore W2954444967C12267149 @default.
- W2954444967 hasConceptScore W2954444967C124101348 @default.
- W2954444967 hasConceptScore W2954444967C126980161 @default.
- W2954444967 hasConceptScore W2954444967C148483581 @default.
- W2954444967 hasConceptScore W2954444967C150194340 @default.
- W2954444967 hasConceptScore W2954444967C153180895 @default.
- W2954444967 hasConceptScore W2954444967C154945302 @default.
- W2954444967 hasConceptScore W2954444967C176066374 @default.
- W2954444967 hasConceptScore W2954444967C22019652 @default.
- W2954444967 hasConceptScore W2954444967C2781067378 @default.
- W2954444967 hasConceptScore W2954444967C2984324147 @default.
- W2954444967 hasConceptScore W2954444967C41008148 @default.
- W2954444967 hasConceptScore W2954444967C50644808 @default.
- W2954444967 hasConceptScore W2954444967C55493867 @default.