Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954472912> ?p ?o ?g. }
- W2954472912 abstract "Abstract Plant-derived nature products, known as herb formulas, have been commonly used in Traditional Chinese Medicine (TCM) for disease prevention and treatment. The herbs have been traditionally classified into different categories according to the TCM Organ systems known as Meridians. Despite the increasing knowledge on the active components of the herbs, the rationale of Meridian classification remains poorly understood. In this study, we took a machine learning approach to explore the classification of Meridian. We determined the molecule features for 646 herbs and their active components including structure-based fingerprints and ADME properties (absorption, distribution, metabolism and excretion), and found that the Meridian can be predicted by machine learning approaches with a top accuracy of 0.83. We also identified the top compound features that were important for the Meridian prediction. To the best of our knowledge, this is the first time that molecular properties of the herb compounds are associated with the TCM Meridians. Taken together, the machine learning approach may provide novel insights for the understanding of molecular evidence of Meridians in TCM. Author Summary In East Asia, plant-derived natural products, known as herb formulas, have been commonly used as Traditional Chinese Medicine (TCM) for disease prevention and treatment. According to the theory of TCM, herbs can be classified as different Meridians according to the balance of Yin and Yang, which are commonly understood as metaphysical concepts. Therefore, the scientific rational of Meridian classification remains poorly understood. The aim of our study was to provide a computational means to understand the classification of Meridians. We showed that the Meridians of herbs can be predicted by the molecular and chemical features of the ingredient compounds, suggesting that the Meridians indeed are associated with the properties of the compounds. Our work provided a novel chemoinformatics approach which may lead to a more systematic strategy to identify the mechanisms of action and active compounds for TCM herbs." @default.
- W2954472912 created "2019-07-12" @default.
- W2954472912 creator A5017969980 @default.
- W2954472912 creator A5025651686 @default.
- W2954472912 creator A5052049405 @default.
- W2954472912 creator A5078773326 @default.
- W2954472912 date "2019-07-09" @default.
- W2954472912 modified "2023-09-25" @default.
- W2954472912 title "Predicting Meridian in Chinese Traditional Medicine Using Machine Learning Approaches" @default.
- W2954472912 cites W1831050183 @default.
- W2954472912 cites W194092756 @default.
- W2954472912 cites W1941947567 @default.
- W2954472912 cites W1970250409 @default.
- W2954472912 cites W1972156862 @default.
- W2954472912 cites W1980662541 @default.
- W2954472912 cites W1988037271 @default.
- W2954472912 cites W1988195734 @default.
- W2954472912 cites W1993595811 @default.
- W2954472912 cites W2017810519 @default.
- W2954472912 cites W2071162315 @default.
- W2954472912 cites W2076498053 @default.
- W2954472912 cites W2083844448 @default.
- W2954472912 cites W2121780366 @default.
- W2954472912 cites W2125310307 @default.
- W2954472912 cites W2127587566 @default.
- W2954472912 cites W2128992039 @default.
- W2954472912 cites W2132847132 @default.
- W2954472912 cites W2136466466 @default.
- W2954472912 cites W2141935892 @default.
- W2954472912 cites W2144877918 @default.
- W2954472912 cites W2152259087 @default.
- W2954472912 cites W2152903770 @default.
- W2954472912 cites W2158131091 @default.
- W2954472912 cites W2159887157 @default.
- W2954472912 cites W2169678694 @default.
- W2954472912 cites W2200017991 @default.
- W2954472912 cites W2213443318 @default.
- W2954472912 cites W2228619239 @default.
- W2954472912 cites W2310224170 @default.
- W2954472912 cites W2345198528 @default.
- W2954472912 cites W2471889258 @default.
- W2954472912 cites W2497501816 @default.
- W2954472912 cites W2520007346 @default.
- W2954472912 cites W2522567337 @default.
- W2954472912 cites W2555886195 @default.
- W2954472912 cites W2561730314 @default.
- W2954472912 cites W2572597390 @default.
- W2954472912 cites W2592286896 @default.
- W2954472912 cites W2593436234 @default.
- W2954472912 cites W2605156573 @default.
- W2954472912 cites W2625653297 @default.
- W2954472912 cites W2735037035 @default.
- W2954472912 cites W2791521684 @default.
- W2954472912 cites W2799452674 @default.
- W2954472912 cites W2802621137 @default.
- W2954472912 cites W2885377258 @default.
- W2954472912 cites W2897293653 @default.
- W2954472912 cites W2911964244 @default.
- W2954472912 cites W4229897481 @default.
- W2954472912 cites W4239510810 @default.
- W2954472912 cites W4248107770 @default.
- W2954472912 doi "https://doi.org/10.1101/697037" @default.
- W2954472912 hasPublicationYear "2019" @default.
- W2954472912 type Work @default.
- W2954472912 sameAs 2954472912 @default.
- W2954472912 citedByCount "2" @default.
- W2954472912 countsByYear W29544729122020 @default.
- W2954472912 countsByYear W29544729122023 @default.
- W2954472912 crossrefType "posted-content" @default.
- W2954472912 hasAuthorship W2954472912A5017969980 @default.
- W2954472912 hasAuthorship W2954472912A5025651686 @default.
- W2954472912 hasAuthorship W2954472912A5052049405 @default.
- W2954472912 hasAuthorship W2954472912A5078773326 @default.
- W2954472912 hasBestOaLocation W29544729121 @default.
- W2954472912 hasConcept C112705442 @default.
- W2954472912 hasConcept C119857082 @default.
- W2954472912 hasConcept C121332964 @default.
- W2954472912 hasConcept C1276947 @default.
- W2954472912 hasConcept C142724271 @default.
- W2954472912 hasConcept C154945302 @default.
- W2954472912 hasConcept C179691212 @default.
- W2954472912 hasConcept C188947578 @default.
- W2954472912 hasConcept C204787440 @default.
- W2954472912 hasConcept C2779824472 @default.
- W2954472912 hasConcept C2991655182 @default.
- W2954472912 hasConcept C41008148 @default.
- W2954472912 hasConcept C556039675 @default.
- W2954472912 hasConcept C69366308 @default.
- W2954472912 hasConcept C71924100 @default.
- W2954472912 hasConcept C98274493 @default.
- W2954472912 hasConceptScore W2954472912C112705442 @default.
- W2954472912 hasConceptScore W2954472912C119857082 @default.
- W2954472912 hasConceptScore W2954472912C121332964 @default.
- W2954472912 hasConceptScore W2954472912C1276947 @default.
- W2954472912 hasConceptScore W2954472912C142724271 @default.
- W2954472912 hasConceptScore W2954472912C154945302 @default.
- W2954472912 hasConceptScore W2954472912C179691212 @default.
- W2954472912 hasConceptScore W2954472912C188947578 @default.
- W2954472912 hasConceptScore W2954472912C204787440 @default.
- W2954472912 hasConceptScore W2954472912C2779824472 @default.