Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954497554> ?p ?o ?g. }
- W2954497554 endingPage "1652" @default.
- W2954497554 startingPage "1638" @default.
- W2954497554 abstract "A 3-D Gabor wavelet provides an effective way to obtain the spectral-spatial-fused features for hyperspectral image, which has shown advantageous performance for material classification and recognition. In this paper, instead of separately employing the Gabor magnitude and phase features, which, respectively, reflect the intensity and variation of surface materials in local area, a cascade superpixel regularized Gabor feature fusion (CSRGFF) approach has been proposed. First, the Gabor filters with particular orientation are utilized to obtain Gabor features (including magnitude and phase) from the original hyperspectral image. Second, a support vector machine (SVM)-based probability representation strategy is developed to fully exploit the decision information in SVM output, and the achieved confidence score can make the following fusion with Gabor phase more effective. Meanwhile, the quadrant bit coding and Hamming distance metric are applied to encode the Gabor phase features and measure sample similarity in sequence. Third, the carefully defined characteristics of two kinds of features are directly combined together without any weighting operation to describe the weight of samples belonging to each class. Finally, a series of superpixel graphs extracted from the raw hyperspectral image with different numbers of superpixels are employed to successively regularize the weighting cube from over-segmentation to under-segmentation, and the classification performance gradually improves with the decrease in the number of superpixels in the regularization procedure. Four widely used real hyperspectral images have been conducted, and the experimental results constantly demonstrate the superiority of our CSRGFF approach over several state-of-the-art methods." @default.
- W2954497554 created "2019-07-12" @default.
- W2954497554 creator A5032950508 @default.
- W2954497554 creator A5033672865 @default.
- W2954497554 creator A5035753061 @default.
- W2954497554 creator A5051616840 @default.
- W2954497554 creator A5091460874 @default.
- W2954497554 date "2020-05-01" @default.
- W2954497554 modified "2023-10-18" @default.
- W2954497554 title "Cascade Superpixel Regularized Gabor Feature Fusion for Hyperspectral Image Classification" @default.
- W2954497554 cites W1574100544 @default.
- W2954497554 cites W1932531222 @default.
- W2954497554 cites W1939429412 @default.
- W2954497554 cites W1965309615 @default.
- W2954497554 cites W1966580635 @default.
- W2954497554 cites W1998030734 @default.
- W2954497554 cites W2001298023 @default.
- W2954497554 cites W2013251902 @default.
- W2954497554 cites W2022631295 @default.
- W2954497554 cites W2029316659 @default.
- W2954497554 cites W2049444988 @default.
- W2954497554 cites W2051968191 @default.
- W2954497554 cites W2073786624 @default.
- W2954497554 cites W2079683903 @default.
- W2954497554 cites W2083541351 @default.
- W2954497554 cites W2085529604 @default.
- W2954497554 cites W2087263574 @default.
- W2954497554 cites W2092923709 @default.
- W2954497554 cites W2102372511 @default.
- W2954497554 cites W2102796633 @default.
- W2954497554 cites W2114819256 @default.
- W2954497554 cites W2118246710 @default.
- W2954497554 cites W2131697388 @default.
- W2954497554 cites W2131725398 @default.
- W2954497554 cites W2135431554 @default.
- W2954497554 cites W2144966944 @default.
- W2954497554 cites W2149471024 @default.
- W2954497554 cites W2152057649 @default.
- W2954497554 cites W2153635508 @default.
- W2954497554 cites W2155658307 @default.
- W2954497554 cites W2163346236 @default.
- W2954497554 cites W2314785379 @default.
- W2954497554 cites W2316226477 @default.
- W2954497554 cites W2332185029 @default.
- W2954497554 cites W2340979919 @default.
- W2954497554 cites W2342652911 @default.
- W2954497554 cites W2345118402 @default.
- W2954497554 cites W2346557146 @default.
- W2954497554 cites W2403153566 @default.
- W2954497554 cites W2519653196 @default.
- W2954497554 cites W2572303978 @default.
- W2954497554 cites W2580081062 @default.
- W2954497554 cites W2581808969 @default.
- W2954497554 cites W2598997103 @default.
- W2954497554 cites W2620547787 @default.
- W2954497554 cites W2626498975 @default.
- W2954497554 cites W2749506874 @default.
- W2954497554 cites W2761385227 @default.
- W2954497554 cites W2765622256 @default.
- W2954497554 cites W2768673271 @default.
- W2954497554 cites W2768975974 @default.
- W2954497554 cites W2782356138 @default.
- W2954497554 cites W2782517596 @default.
- W2954497554 cites W2782522152 @default.
- W2954497554 cites W2789643644 @default.
- W2954497554 cites W2800371750 @default.
- W2954497554 cites W2808979303 @default.
- W2954497554 cites W2891059222 @default.
- W2954497554 cites W2899003677 @default.
- W2954497554 cites W4239510810 @default.
- W2954497554 cites W4240485910 @default.
- W2954497554 doi "https://doi.org/10.1109/tnnls.2019.2921564" @default.
- W2954497554 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31283512" @default.
- W2954497554 hasPublicationYear "2020" @default.
- W2954497554 type Work @default.
- W2954497554 sameAs 2954497554 @default.
- W2954497554 citedByCount "36" @default.
- W2954497554 countsByYear W29544975542020 @default.
- W2954497554 countsByYear W29544975542021 @default.
- W2954497554 countsByYear W29544975542022 @default.
- W2954497554 countsByYear W29544975542023 @default.
- W2954497554 crossrefType "journal-article" @default.
- W2954497554 hasAuthorship W2954497554A5032950508 @default.
- W2954497554 hasAuthorship W2954497554A5033672865 @default.
- W2954497554 hasAuthorship W2954497554A5035753061 @default.
- W2954497554 hasAuthorship W2954497554A5051616840 @default.
- W2954497554 hasAuthorship W2954497554A5091460874 @default.
- W2954497554 hasConcept C126838900 @default.
- W2954497554 hasConcept C136902061 @default.
- W2954497554 hasConcept C138885662 @default.
- W2954497554 hasConcept C153180895 @default.
- W2954497554 hasConcept C154945302 @default.
- W2954497554 hasConcept C159078339 @default.
- W2954497554 hasConcept C183115368 @default.
- W2954497554 hasConcept C196216189 @default.
- W2954497554 hasConcept C2776401178 @default.
- W2954497554 hasConcept C2779883129 @default.
- W2954497554 hasConcept C31972630 @default.