Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954581201> ?p ?o ?g. }
- W2954581201 endingPage "101929" @default.
- W2954581201 startingPage "101929" @default.
- W2954581201 abstract "Combining machine learning with neuroimaging data has a great potential for early diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, it remains unclear how well the classifiers built on one population can predict MCI/AD diagnosis of other populations. This study aimed to employ a spectral graph convolutional neural network (graph-CNN), that incorporated cortical thickness and geometry, to identify MCI and AD based on 3089 T1-weighted MRI data of the ADNI-2 cohort, and to evaluate its feasibility to predict AD in the ADNI-1 cohort (n = 3602) and an Asian cohort (n = 347). For the ADNI-2 cohort, the graph-CNN showed classification accuracy of controls (CN) vs. AD at 85.8% and early MCI (EMCI) vs. AD at 79.2%, followed by CN vs. late MCI (LMCI) (69.3%), LMCI vs. AD (65.2%), EMCI vs. LMCI (60.9%), and CN vs. EMCI (51.8%). We demonstrated the robustness of the graph-CNN among the existing deep learning approaches, such as Euclidean-domain-based multilayer network and 1D CNN on cortical thickness, and 2D and 3D CNNs on T1-weighted MR images of the ADNI-2 cohort. The graph-CNN also achieved the prediction on the conversion of EMCI to AD at 75% and that of LMCI to AD at 92%. The find-tuned graph-CNN further provided a promising CN vs. AD classification accuracy of 89.4% on the ADNI-1 cohort and >90% on the Asian cohort. Our study demonstrated the feasibility to transfer AD/MCI classifiers learned from one population to the other. Notably, incorporating cortical geometry in CNN has the potential to improve classification performance." @default.
- W2954581201 created "2019-07-12" @default.
- W2954581201 creator A5030046423 @default.
- W2954581201 creator A5048798417 @default.
- W2954581201 creator A5056237801 @default.
- W2954581201 creator A5063488909 @default.
- W2954581201 creator A5065928557 @default.
- W2954581201 creator A5081936525 @default.
- W2954581201 date "2019-01-01" @default.
- W2954581201 modified "2023-10-18" @default.
- W2954581201 title "Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations" @default.
- W2954581201 cites W1521781547 @default.
- W2954581201 cites W1529527003 @default.
- W2954581201 cites W1550721541 @default.
- W2954581201 cites W1872034074 @default.
- W2954581201 cites W1962263973 @default.
- W2954581201 cites W1964551302 @default.
- W2954581201 cites W1974874858 @default.
- W2954581201 cites W1975760079 @default.
- W2954581201 cites W1982145113 @default.
- W2954581201 cites W1985056536 @default.
- W2954581201 cites W1986515506 @default.
- W2954581201 cites W1987204546 @default.
- W2954581201 cites W1992395739 @default.
- W2954581201 cites W2000292092 @default.
- W2954581201 cites W2003851329 @default.
- W2954581201 cites W2004293194 @default.
- W2954581201 cites W2004421347 @default.
- W2954581201 cites W2012133068 @default.
- W2954581201 cites W2017237939 @default.
- W2954581201 cites W2028739995 @default.
- W2954581201 cites W2042865986 @default.
- W2954581201 cites W2048254304 @default.
- W2954581201 cites W2050914944 @default.
- W2954581201 cites W2054540100 @default.
- W2954581201 cites W2058046532 @default.
- W2954581201 cites W2060458649 @default.
- W2954581201 cites W2067722007 @default.
- W2954581201 cites W2072188503 @default.
- W2954581201 cites W2073832990 @default.
- W2954581201 cites W2088309143 @default.
- W2954581201 cites W2096931656 @default.
- W2954581201 cites W2104230802 @default.
- W2954581201 cites W2111874290 @default.
- W2954581201 cites W2113197827 @default.
- W2954581201 cites W2115865170 @default.
- W2954581201 cites W2127283921 @default.
- W2954581201 cites W2127384340 @default.
- W2954581201 cites W2134286053 @default.
- W2954581201 cites W2138960684 @default.
- W2954581201 cites W2139784227 @default.
- W2954581201 cites W2143017382 @default.
- W2954581201 cites W2146089088 @default.
- W2954581201 cites W2153171432 @default.
- W2954581201 cites W2154766421 @default.
- W2954581201 cites W2160034813 @default.
- W2954581201 cites W2162798214 @default.
- W2954581201 cites W2164330572 @default.
- W2954581201 cites W2164417323 @default.
- W2954581201 cites W2167969178 @default.
- W2954581201 cites W2169976721 @default.
- W2954581201 cites W2171380313 @default.
- W2954581201 cites W2175191116 @default.
- W2954581201 cites W2181899595 @default.
- W2954581201 cites W2192985207 @default.
- W2954581201 cites W2194775991 @default.
- W2954581201 cites W2253429366 @default.
- W2954581201 cites W2411034422 @default.
- W2954581201 cites W2517137788 @default.
- W2954581201 cites W2532850419 @default.
- W2954581201 cites W2566903824 @default.
- W2954581201 cites W2569531558 @default.
- W2954581201 cites W2582180708 @default.
- W2954581201 cites W2606546398 @default.
- W2954581201 cites W2764239667 @default.
- W2954581201 cites W2790230359 @default.
- W2954581201 cites W2792608425 @default.
- W2954581201 cites W2799399874 @default.
- W2954581201 cites W2884156795 @default.
- W2954581201 cites W2884781986 @default.
- W2954581201 cites W2886445457 @default.
- W2954581201 cites W2891955176 @default.
- W2954581201 cites W2905035821 @default.
- W2954581201 cites W4210975612 @default.
- W2954581201 cites W66427752 @default.
- W2954581201 doi "https://doi.org/10.1016/j.nicl.2019.101929" @default.
- W2954581201 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6627731" @default.
- W2954581201 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31491832" @default.
- W2954581201 hasPublicationYear "2019" @default.
- W2954581201 type Work @default.
- W2954581201 sameAs 2954581201 @default.
- W2954581201 citedByCount "66" @default.
- W2954581201 countsByYear W29545812012019 @default.
- W2954581201 countsByYear W29545812012020 @default.
- W2954581201 countsByYear W29545812012021 @default.
- W2954581201 countsByYear W29545812012022 @default.
- W2954581201 countsByYear W29545812012023 @default.
- W2954581201 crossrefType "journal-article" @default.