Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954618921> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2954618921 endingPage "1" @default.
- W2954618921 startingPage "1" @default.
- W2954618921 abstract "Model selection and forecasting in stress tests can be facilitated using machine learning techniques. These techniques have proved robust in other fields for dealing with the curse of dimensionality, a situation often encountered in applied stress testing. Lasso regressions, in particular, are well suited for building forecasting models when the number of potential covariates is large, and the number of observations is small or roughly equal to the number of covariates. This paper presents a conceptual overview of lasso regressions, explains how they fit in applied stress tests, describes its advantages over other model selection methods, and illustrates their application by constructing forecasting models of sectoral probabilities of default in an advanced emerging market economy." @default.
- W2954618921 created "2019-07-12" @default.
- W2954618921 creator A5068383864 @default.
- W2954618921 date "2017-01-01" @default.
- W2954618921 modified "2023-10-16" @default.
- W2954618921 title "Lasso Regressions and Forecasting Models in Applied Stress Testing" @default.
- W2954618921 cites W1523985187 @default.
- W2954618921 cites W1973491767 @default.
- W2954618921 cites W1980378769 @default.
- W2954618921 cites W1996154384 @default.
- W2954618921 cites W2079563517 @default.
- W2954618921 cites W2105630053 @default.
- W2954618921 cites W2112261373 @default.
- W2954618921 cites W2112802420 @default.
- W2954618921 cites W2124635303 @default.
- W2954618921 cites W2125151258 @default.
- W2954618921 cites W2134056163 @default.
- W2954618921 cites W2135046866 @default.
- W2954618921 cites W2196039636 @default.
- W2954618921 cites W2487770199 @default.
- W2954618921 cites W2921430350 @default.
- W2954618921 cites W3022446978 @default.
- W2954618921 cites W3098834468 @default.
- W2954618921 cites W3121553976 @default.
- W2954618921 cites W3122503089 @default.
- W2954618921 cites W3123715300 @default.
- W2954618921 cites W3124883666 @default.
- W2954618921 cites W3125637821 @default.
- W2954618921 cites W4229873072 @default.
- W2954618921 cites W4300819821 @default.
- W2954618921 cites W643015533 @default.
- W2954618921 doi "https://doi.org/10.5089/9781475599022.001" @default.
- W2954618921 hasPublicationYear "2017" @default.
- W2954618921 type Work @default.
- W2954618921 sameAs 2954618921 @default.
- W2954618921 citedByCount "11" @default.
- W2954618921 countsByYear W29546189212019 @default.
- W2954618921 countsByYear W29546189212020 @default.
- W2954618921 countsByYear W29546189212021 @default.
- W2954618921 countsByYear W29546189212022 @default.
- W2954618921 countsByYear W29546189212023 @default.
- W2954618921 crossrefType "journal-article" @default.
- W2954618921 hasAuthorship W2954618921A5068383864 @default.
- W2954618921 hasBestOaLocation W29546189211 @default.
- W2954618921 hasConcept C105795698 @default.
- W2954618921 hasConcept C136764020 @default.
- W2954618921 hasConcept C149782125 @default.
- W2954618921 hasConcept C199360897 @default.
- W2954618921 hasConcept C203868755 @default.
- W2954618921 hasConcept C33923547 @default.
- W2954618921 hasConcept C37616216 @default.
- W2954618921 hasConcept C41008148 @default.
- W2954618921 hasConcept C7515471 @default.
- W2954618921 hasConcept C83546350 @default.
- W2954618921 hasConceptScore W2954618921C105795698 @default.
- W2954618921 hasConceptScore W2954618921C136764020 @default.
- W2954618921 hasConceptScore W2954618921C149782125 @default.
- W2954618921 hasConceptScore W2954618921C199360897 @default.
- W2954618921 hasConceptScore W2954618921C203868755 @default.
- W2954618921 hasConceptScore W2954618921C33923547 @default.
- W2954618921 hasConceptScore W2954618921C37616216 @default.
- W2954618921 hasConceptScore W2954618921C41008148 @default.
- W2954618921 hasConceptScore W2954618921C7515471 @default.
- W2954618921 hasConceptScore W2954618921C83546350 @default.
- W2954618921 hasIssue "108" @default.
- W2954618921 hasLocation W29546189211 @default.
- W2954618921 hasLocation W29546189212 @default.
- W2954618921 hasOpenAccess W2954618921 @default.
- W2954618921 hasPrimaryLocation W29546189211 @default.
- W2954618921 hasRelatedWork W2125459357 @default.
- W2954618921 hasRelatedWork W2147626660 @default.
- W2954618921 hasRelatedWork W2371621356 @default.
- W2954618921 hasRelatedWork W2771997889 @default.
- W2954618921 hasRelatedWork W2910575305 @default.
- W2954618921 hasRelatedWork W2910950436 @default.
- W2954618921 hasRelatedWork W2996451003 @default.
- W2954618921 hasRelatedWork W3121565112 @default.
- W2954618921 hasRelatedWork W4221147225 @default.
- W2954618921 hasRelatedWork W4288630721 @default.
- W2954618921 hasVolume "17" @default.
- W2954618921 isParatext "false" @default.
- W2954618921 isRetracted "false" @default.
- W2954618921 magId "2954618921" @default.
- W2954618921 workType "article" @default.