Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954672586> ?p ?o ?g. }
- W2954672586 endingPage "647" @default.
- W2954672586 startingPage "647" @default.
- W2954672586 abstract "Accurate face segmentation strongly benefits the human face image analysis problem. In this paper we propose a unified framework for face image analysis through end-to-end semantic face segmentation. The proposed framework contains a set of stack components for face understanding, which includes head pose estimation, age classification, and gender recognition. A manually labeled face data-set is used for training the Conditional Random Fields (CRFs) based segmentation model. A multi-class face segmentation framework developed through CRFs segments a facial image into six parts. The probabilistic classification strategy is used, and probability maps are generated for each class. The probability maps are used as features descriptors and a Random Decision Forest (RDF) classifier is modeled for each task (head pose, age, and gender). We assess the performance of the proposed framework on several data-sets and report better results as compared to the previously reported results." @default.
- W2954672586 created "2019-07-12" @default.
- W2954672586 creator A5021733929 @default.
- W2954672586 creator A5023881021 @default.
- W2954672586 creator A5039401755 @default.
- W2954672586 creator A5053456657 @default.
- W2954672586 creator A5060212021 @default.
- W2954672586 creator A5081507230 @default.
- W2954672586 date "2019-06-30" @default.
- W2954672586 modified "2023-10-17" @default.
- W2954672586 title "A Unified Framework for Head Pose, Age and Gender Classification through End-to-End Face Segmentation" @default.
- W2954672586 cites W1501531539 @default.
- W2954672586 cites W1963599662 @default.
- W2954672586 cites W1965804146 @default.
- W2954672586 cites W1982150204 @default.
- W2954672586 cites W1990937109 @default.
- W2954672586 cites W1997011019 @default.
- W2954672586 cites W1999633305 @default.
- W2954672586 cites W2002347177 @default.
- W2954672586 cites W2020944503 @default.
- W2954672586 cites W2035619164 @default.
- W2954672586 cites W2044291182 @default.
- W2954672586 cites W2060731032 @default.
- W2954672586 cites W2066808422 @default.
- W2954672586 cites W2067950060 @default.
- W2954672586 cites W2076017598 @default.
- W2954672586 cites W2082498363 @default.
- W2954672586 cites W2100812554 @default.
- W2954672586 cites W2101392314 @default.
- W2954672586 cites W2105026179 @default.
- W2954672586 cites W2115394472 @default.
- W2954672586 cites W2121939926 @default.
- W2954672586 cites W2126767866 @default.
- W2954672586 cites W2145310492 @default.
- W2954672586 cites W2147278565 @default.
- W2954672586 cites W2149382413 @default.
- W2954672586 cites W2152914237 @default.
- W2954672586 cites W2158617780 @default.
- W2954672586 cites W2170414574 @default.
- W2954672586 cites W2171262059 @default.
- W2954672586 cites W2548340823 @default.
- W2954672586 cites W2615322531 @default.
- W2954672586 cites W2751647243 @default.
- W2954672586 cites W2803914838 @default.
- W2954672586 cites W2804865177 @default.
- W2954672586 cites W2923153064 @default.
- W2954672586 cites W2953456888 @default.
- W2954672586 cites W2963377935 @default.
- W2954672586 cites W2963410617 @default.
- W2954672586 doi "https://doi.org/10.3390/e21070647" @default.
- W2954672586 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7515140" @default.
- W2954672586 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33267361" @default.
- W2954672586 hasPublicationYear "2019" @default.
- W2954672586 type Work @default.
- W2954672586 sameAs 2954672586 @default.
- W2954672586 citedByCount "17" @default.
- W2954672586 countsByYear W29546725862019 @default.
- W2954672586 countsByYear W29546725862020 @default.
- W2954672586 countsByYear W29546725862021 @default.
- W2954672586 countsByYear W29546725862022 @default.
- W2954672586 countsByYear W29546725862023 @default.
- W2954672586 crossrefType "journal-article" @default.
- W2954672586 hasAuthorship W2954672586A5021733929 @default.
- W2954672586 hasAuthorship W2954672586A5023881021 @default.
- W2954672586 hasAuthorship W2954672586A5039401755 @default.
- W2954672586 hasAuthorship W2954672586A5053456657 @default.
- W2954672586 hasAuthorship W2954672586A5060212021 @default.
- W2954672586 hasAuthorship W2954672586A5081507230 @default.
- W2954672586 hasBestOaLocation W29546725861 @default.
- W2954672586 hasConcept C119857082 @default.
- W2954672586 hasConcept C124504099 @default.
- W2954672586 hasConcept C144024400 @default.
- W2954672586 hasConcept C152565575 @default.
- W2954672586 hasConcept C153180895 @default.
- W2954672586 hasConcept C154945302 @default.
- W2954672586 hasConcept C169258074 @default.
- W2954672586 hasConcept C2775953691 @default.
- W2954672586 hasConcept C2779304628 @default.
- W2954672586 hasConcept C31510193 @default.
- W2954672586 hasConcept C31972630 @default.
- W2954672586 hasConcept C36289849 @default.
- W2954672586 hasConcept C41008148 @default.
- W2954672586 hasConcept C49937458 @default.
- W2954672586 hasConcept C65885262 @default.
- W2954672586 hasConcept C89600930 @default.
- W2954672586 hasConcept C95623464 @default.
- W2954672586 hasConceptScore W2954672586C119857082 @default.
- W2954672586 hasConceptScore W2954672586C124504099 @default.
- W2954672586 hasConceptScore W2954672586C144024400 @default.
- W2954672586 hasConceptScore W2954672586C152565575 @default.
- W2954672586 hasConceptScore W2954672586C153180895 @default.
- W2954672586 hasConceptScore W2954672586C154945302 @default.
- W2954672586 hasConceptScore W2954672586C169258074 @default.
- W2954672586 hasConceptScore W2954672586C2775953691 @default.
- W2954672586 hasConceptScore W2954672586C2779304628 @default.
- W2954672586 hasConceptScore W2954672586C31510193 @default.
- W2954672586 hasConceptScore W2954672586C31972630 @default.
- W2954672586 hasConceptScore W2954672586C36289849 @default.