Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954723710> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2954723710 endingPage "2762" @default.
- W2954723710 startingPage "2753" @default.
- W2954723710 abstract "Graph-based transductive learning (GTL) is the efficient semi-supervised learning technique which is always employed in that sufficient labeled samples can not be obtained. Conventional GTL methods generally construct a inaccurate graph in feature domain and they are not able to align feature information with label information. To address these issues, we propose an approach called Progressive Graph-based subspace transductive learning (PGSTL) in this paper. PGSTL gradually find the intrinsic relationship between samples that more accurately aligns feature with label. Meanwhile, PGSTL develops a feature affinity matrix in the subspace of original high-dimensional feature space, which effectively reduce the interference of noise points. And then, the representative relation matrix and the feature affinity matrix are optimized by iterative optimization strategy and finally aligned. In this way, PGSTL can not only effectively reduce the interference of noisy points, but also comprehensively consider the information in the feature and label domain of data. Extensive experimental results on various benchmark datasets demonstrate that the PGSTL achieves the best performance compared to some state-of-the-art semi-supervised learning methods." @default.
- W2954723710 created "2019-07-12" @default.
- W2954723710 creator A5012324763 @default.
- W2954723710 creator A5040961663 @default.
- W2954723710 date "2019-12-01" @default.
- W2954723710 modified "2023-09-27" @default.
- W2954723710 title "Progressive graph‐based subspace transductive learning for semi‐supervised classification" @default.
- W2954723710 cites W1596717185 @default.
- W2954723710 cites W1904464160 @default.
- W2954723710 cites W1966949944 @default.
- W2954723710 cites W1977556410 @default.
- W2954723710 cites W2014982480 @default.
- W2954723710 cites W2030646297 @default.
- W2954723710 cites W2035331133 @default.
- W2954723710 cites W2056415893 @default.
- W2954723710 cites W2063080416 @default.
- W2954723710 cites W2080509359 @default.
- W2954723710 cites W2083732757 @default.
- W2954723710 cites W2145486800 @default.
- W2954723710 cites W2310335681 @default.
- W2954723710 cites W2413034400 @default.
- W2954723710 cites W2612228035 @default.
- W2954723710 cites W2614818206 @default.
- W2954723710 cites W2739107216 @default.
- W2954723710 cites W2763434300 @default.
- W2954723710 cites W2765158981 @default.
- W2954723710 cites W2769509511 @default.
- W2954723710 cites W2890732922 @default.
- W2954723710 cites W2897327263 @default.
- W2954723710 cites W3146829402 @default.
- W2954723710 doi "https://doi.org/10.1049/iet-ipr.2018.6363" @default.
- W2954723710 hasPublicationYear "2019" @default.
- W2954723710 type Work @default.
- W2954723710 sameAs 2954723710 @default.
- W2954723710 citedByCount "3" @default.
- W2954723710 countsByYear W29547237102020 @default.
- W2954723710 countsByYear W29547237102021 @default.
- W2954723710 countsByYear W29547237102022 @default.
- W2954723710 crossrefType "journal-article" @default.
- W2954723710 hasAuthorship W2954723710A5012324763 @default.
- W2954723710 hasAuthorship W2954723710A5040961663 @default.
- W2954723710 hasConcept C119857082 @default.
- W2954723710 hasConcept C132525143 @default.
- W2954723710 hasConcept C153180895 @default.
- W2954723710 hasConcept C154945302 @default.
- W2954723710 hasConcept C32834561 @default.
- W2954723710 hasConcept C41008148 @default.
- W2954723710 hasConcept C58973888 @default.
- W2954723710 hasConcept C80444323 @default.
- W2954723710 hasConceptScore W2954723710C119857082 @default.
- W2954723710 hasConceptScore W2954723710C132525143 @default.
- W2954723710 hasConceptScore W2954723710C153180895 @default.
- W2954723710 hasConceptScore W2954723710C154945302 @default.
- W2954723710 hasConceptScore W2954723710C32834561 @default.
- W2954723710 hasConceptScore W2954723710C41008148 @default.
- W2954723710 hasConceptScore W2954723710C58973888 @default.
- W2954723710 hasConceptScore W2954723710C80444323 @default.
- W2954723710 hasIssue "14" @default.
- W2954723710 hasLocation W29547237101 @default.
- W2954723710 hasOpenAccess W2954723710 @default.
- W2954723710 hasPrimaryLocation W29547237101 @default.
- W2954723710 hasRelatedWork W1998938004 @default.
- W2954723710 hasRelatedWork W2016349419 @default.
- W2954723710 hasRelatedWork W2042327336 @default.
- W2954723710 hasRelatedWork W2159633528 @default.
- W2954723710 hasRelatedWork W2295628041 @default.
- W2954723710 hasRelatedWork W2321141263 @default.
- W2954723710 hasRelatedWork W2543161807 @default.
- W2954723710 hasRelatedWork W3095538999 @default.
- W2954723710 hasRelatedWork W3210156800 @default.
- W2954723710 hasRelatedWork W2164844972 @default.
- W2954723710 hasVolume "13" @default.
- W2954723710 isParatext "false" @default.
- W2954723710 isRetracted "false" @default.
- W2954723710 magId "2954723710" @default.
- W2954723710 workType "article" @default.