Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954735797> ?p ?o ?g. }
- W2954735797 abstract "Predicting booking probability and value at the traveler level plays a central role in computational advertising for massive two-sided vacation rental marketplaces. These marketplaces host millions of travelers with long shopping cycles, spending a lot of time in the discovery phase. The footprint of the travelers in their discovery is a useful data source to help these marketplaces to predict shopping probability and value. However, there is no one-size-fits-all solution for this purpose. In this paper, we propose a hybrid model that infuses deep and shallow neural network embeddings into a gradient boosting tree model. This approach allows the latent preferences of millions of travelers to be automatically learned from sparse session logs. In addition, we present the architecture that we deployed into our production system. We find that there is a pragmatic sweet spot between expensive complex deep neural networks and simple shallow neural networks that can increase the prediction performance of a model by seven percent, based on offline analysis." @default.
- W2954735797 created "2019-07-12" @default.
- W2954735797 creator A5002046437 @default.
- W2954735797 creator A5041466460 @default.
- W2954735797 creator A5070637373 @default.
- W2954735797 date "2019-07-03" @default.
- W2954735797 modified "2023-09-25" @default.
- W2954735797 title "Deep Personalized Re-targeting" @default.
- W2954735797 cites W1558373857 @default.
- W2954735797 cites W1720514416 @default.
- W2954735797 cites W2024046085 @default.
- W2954735797 cites W2059179344 @default.
- W2954735797 cites W2071194364 @default.
- W2954735797 cites W2075211514 @default.
- W2954735797 cites W2084025544 @default.
- W2954735797 cites W2093623550 @default.
- W2954735797 cites W2107581815 @default.
- W2954735797 cites W2153579005 @default.
- W2954735797 cites W2250473257 @default.
- W2954735797 cites W2294913637 @default.
- W2954735797 cites W2475334473 @default.
- W2954735797 cites W2500403796 @default.
- W2954735797 cites W2509235963 @default.
- W2954735797 cites W2510174253 @default.
- W2954735797 cites W2517540742 @default.
- W2954735797 cites W2530299800 @default.
- W2954735797 cites W2566636429 @default.
- W2954735797 cites W2595177306 @default.
- W2954735797 cites W2606642831 @default.
- W2954735797 cites W2723293840 @default.
- W2954735797 cites W2752172973 @default.
- W2954735797 cites W2756899312 @default.
- W2954735797 cites W2807855639 @default.
- W2954735797 cites W2808787330 @default.
- W2954735797 cites W2883762696 @default.
- W2954735797 cites W2890837695 @default.
- W2954735797 cites W2891461957 @default.
- W2954735797 cites W2892421162 @default.
- W2954735797 cites W2908972570 @default.
- W2954735797 cites W2910414918 @default.
- W2954735797 cites W2912868486 @default.
- W2954735797 cites W2935747351 @default.
- W2954735797 cites W2941531368 @default.
- W2954735797 cites W2963601856 @default.
- W2954735797 cites W2963642516 @default.
- W2954735797 cites W2964182926 @default.
- W2954735797 cites W2964341035 @default.
- W2954735797 cites W3099726625 @default.
- W2954735797 cites W3125877494 @default.
- W2954735797 doi "https://doi.org/10.48550/arxiv.1907.02822" @default.
- W2954735797 hasPublicationYear "2019" @default.
- W2954735797 type Work @default.
- W2954735797 sameAs 2954735797 @default.
- W2954735797 citedByCount "0" @default.
- W2954735797 crossrefType "posted-content" @default.
- W2954735797 hasAuthorship W2954735797A5002046437 @default.
- W2954735797 hasAuthorship W2954735797A5041466460 @default.
- W2954735797 hasAuthorship W2954735797A5070637373 @default.
- W2954735797 hasBestOaLocation W29547357971 @default.
- W2954735797 hasConcept C108583219 @default.
- W2954735797 hasConcept C119857082 @default.
- W2954735797 hasConcept C123657996 @default.
- W2954735797 hasConcept C124101348 @default.
- W2954735797 hasConcept C126831891 @default.
- W2954735797 hasConcept C127413603 @default.
- W2954735797 hasConcept C136764020 @default.
- W2954735797 hasConcept C147176958 @default.
- W2954735797 hasConcept C154945302 @default.
- W2954735797 hasConcept C166957645 @default.
- W2954735797 hasConcept C18903297 @default.
- W2954735797 hasConcept C205649164 @default.
- W2954735797 hasConcept C2779182362 @default.
- W2954735797 hasConcept C41008148 @default.
- W2954735797 hasConcept C46686674 @default.
- W2954735797 hasConcept C50644808 @default.
- W2954735797 hasConcept C85502023 @default.
- W2954735797 hasConcept C86803240 @default.
- W2954735797 hasConceptScore W2954735797C108583219 @default.
- W2954735797 hasConceptScore W2954735797C119857082 @default.
- W2954735797 hasConceptScore W2954735797C123657996 @default.
- W2954735797 hasConceptScore W2954735797C124101348 @default.
- W2954735797 hasConceptScore W2954735797C126831891 @default.
- W2954735797 hasConceptScore W2954735797C127413603 @default.
- W2954735797 hasConceptScore W2954735797C136764020 @default.
- W2954735797 hasConceptScore W2954735797C147176958 @default.
- W2954735797 hasConceptScore W2954735797C154945302 @default.
- W2954735797 hasConceptScore W2954735797C166957645 @default.
- W2954735797 hasConceptScore W2954735797C18903297 @default.
- W2954735797 hasConceptScore W2954735797C205649164 @default.
- W2954735797 hasConceptScore W2954735797C2779182362 @default.
- W2954735797 hasConceptScore W2954735797C41008148 @default.
- W2954735797 hasConceptScore W2954735797C46686674 @default.
- W2954735797 hasConceptScore W2954735797C50644808 @default.
- W2954735797 hasConceptScore W2954735797C85502023 @default.
- W2954735797 hasConceptScore W2954735797C86803240 @default.
- W2954735797 hasLocation W29547357971 @default.
- W2954735797 hasOpenAccess W2954735797 @default.
- W2954735797 hasPrimaryLocation W29547357971 @default.
- W2954735797 hasRelatedWork W3014300295 @default.
- W2954735797 hasRelatedWork W3164822677 @default.