Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954835624> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2954835624 abstract "Continuous fibre reinforced plastics (CoFRPs) offer remarkable mechanical properties at low density and have thus drawn increasing attention in weight-sensitive industries over the last decades. Contrasting metals, manufacturing of CoFRPs consists of multiple steps, often comprising a forming process of a textile (draping). However, managing the inherently complex, anisotropic and non-linear material behaviour during textile forming and avoiding forming defects is a great challenge in serial production. To assess formability prior to manufacture, virtual process simulations can be applied. For optimum part quality, component design and applied process parameters must complement each other, which in turn requires a high number of optimisation iterations and quickly exceeds reasonable computation times. Considerable effort has been made with respect to obtaining optimum process parameters, however considering geometry adaptions to achieve manufacturability is rarely addressed. Deep Learning techniques using convolutional neural networks (CNN) are capable of learning complex system dynamics from supplied samples. In the work presented here, CNNs are used to rapidly predict textile forming results of variable component geometries. A large database of highly variant geometries and corresponding draping examples is generated, on which the CNNs are trained. The paper shows, that CNNs are capable of reproducing the underlying forming dynamics and that they generalise well to unknown test geometries. Contrasting traditional meta-model approaches, the presented method estimates not just a scalar part quality attribute, but predicts the complete shear strain field, which facilitates engineering interpretation. The method is demonstrated on different geometries ranging from simple shapes to complex geometries. Being computational inexpensive, CNNs give immediate feedback for real-time geometry iterations during component design. Thus, CNNs are considered a promising and time-efficient tool to reflect manufacturability during part and process design." @default.
- W2954835624 created "2019-07-12" @default.
- W2954835624 creator A5014011915 @default.
- W2954835624 creator A5036360265 @default.
- W2954835624 creator A5072561672 @default.
- W2954835624 creator A5082930819 @default.
- W2954835624 date "2019-01-01" @default.
- W2954835624 modified "2023-10-01" @default.
- W2954835624 title "An approach for rapid prediction of textile draping results for variable composite component geometries using deep neural networks" @default.
- W2954835624 cites W1029442487 @default.
- W2954835624 cites W2006496245 @default.
- W2954835624 cites W2011581025 @default.
- W2954835624 cites W2474079465 @default.
- W2954835624 cites W2790425684 @default.
- W2954835624 cites W2794888173 @default.
- W2954835624 cites W2802465278 @default.
- W2954835624 cites W2804760948 @default.
- W2954835624 cites W2808987723 @default.
- W2954835624 cites W2810549927 @default.
- W2954835624 cites W2884971164 @default.
- W2954835624 cites W332901832 @default.
- W2954835624 doi "https://doi.org/10.1063/1.5112512" @default.
- W2954835624 hasPublicationYear "2019" @default.
- W2954835624 type Work @default.
- W2954835624 sameAs 2954835624 @default.
- W2954835624 citedByCount "15" @default.
- W2954835624 countsByYear W29548356242019 @default.
- W2954835624 countsByYear W29548356242020 @default.
- W2954835624 countsByYear W29548356242021 @default.
- W2954835624 countsByYear W29548356242022 @default.
- W2954835624 countsByYear W29548356242023 @default.
- W2954835624 crossrefType "proceedings-article" @default.
- W2954835624 hasAuthorship W2954835624A5014011915 @default.
- W2954835624 hasAuthorship W2954835624A5036360265 @default.
- W2954835624 hasAuthorship W2954835624A5072561672 @default.
- W2954835624 hasAuthorship W2954835624A5082930819 @default.
- W2954835624 hasBestOaLocation W29548356242 @default.
- W2954835624 hasConcept C108583219 @default.
- W2954835624 hasConcept C111919701 @default.
- W2954835624 hasConcept C11413529 @default.
- W2954835624 hasConcept C121332964 @default.
- W2954835624 hasConcept C127413603 @default.
- W2954835624 hasConcept C139321929 @default.
- W2954835624 hasConcept C154945302 @default.
- W2954835624 hasConcept C159985019 @default.
- W2954835624 hasConcept C168167062 @default.
- W2954835624 hasConcept C192562407 @default.
- W2954835624 hasConcept C2781031896 @default.
- W2954835624 hasConcept C41008148 @default.
- W2954835624 hasConcept C45374587 @default.
- W2954835624 hasConcept C50644808 @default.
- W2954835624 hasConcept C62064638 @default.
- W2954835624 hasConcept C78519656 @default.
- W2954835624 hasConcept C79127381 @default.
- W2954835624 hasConcept C81363708 @default.
- W2954835624 hasConcept C97355855 @default.
- W2954835624 hasConcept C98045186 @default.
- W2954835624 hasConceptScore W2954835624C108583219 @default.
- W2954835624 hasConceptScore W2954835624C111919701 @default.
- W2954835624 hasConceptScore W2954835624C11413529 @default.
- W2954835624 hasConceptScore W2954835624C121332964 @default.
- W2954835624 hasConceptScore W2954835624C127413603 @default.
- W2954835624 hasConceptScore W2954835624C139321929 @default.
- W2954835624 hasConceptScore W2954835624C154945302 @default.
- W2954835624 hasConceptScore W2954835624C159985019 @default.
- W2954835624 hasConceptScore W2954835624C168167062 @default.
- W2954835624 hasConceptScore W2954835624C192562407 @default.
- W2954835624 hasConceptScore W2954835624C2781031896 @default.
- W2954835624 hasConceptScore W2954835624C41008148 @default.
- W2954835624 hasConceptScore W2954835624C45374587 @default.
- W2954835624 hasConceptScore W2954835624C50644808 @default.
- W2954835624 hasConceptScore W2954835624C62064638 @default.
- W2954835624 hasConceptScore W2954835624C78519656 @default.
- W2954835624 hasConceptScore W2954835624C79127381 @default.
- W2954835624 hasConceptScore W2954835624C81363708 @default.
- W2954835624 hasConceptScore W2954835624C97355855 @default.
- W2954835624 hasConceptScore W2954835624C98045186 @default.
- W2954835624 hasLocation W29548356241 @default.
- W2954835624 hasLocation W29548356242 @default.
- W2954835624 hasOpenAccess W2954835624 @default.
- W2954835624 hasPrimaryLocation W29548356241 @default.
- W2954835624 hasRelatedWork W1973780678 @default.
- W2954835624 hasRelatedWork W2731899572 @default.
- W2954835624 hasRelatedWork W2999805992 @default.
- W2954835624 hasRelatedWork W3116150086 @default.
- W2954835624 hasRelatedWork W3133861977 @default.
- W2954835624 hasRelatedWork W4200173597 @default.
- W2954835624 hasRelatedWork W4223565121 @default.
- W2954835624 hasRelatedWork W4312417841 @default.
- W2954835624 hasRelatedWork W4321369474 @default.
- W2954835624 hasRelatedWork W2176448319 @default.
- W2954835624 isParatext "false" @default.
- W2954835624 isRetracted "false" @default.
- W2954835624 magId "2954835624" @default.
- W2954835624 workType "article" @default.