Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954865956> ?p ?o ?g. }
- W2954865956 abstract "Modern cyber-physical systems (e.g., robotics systems) are typically composed of physical and software components, the characteristics of which are likely to change over time. Assumptions about parts of the system made at design time may not hold at run time, especially when a system is deployed for long periods (e.g., over decades). Self-adaptation is designed to find reconfigurations of systems to handle such run-time inconsistencies. Planners can be used to find and enact optimal reconfigurations in such an evolving context. However, for systems that are highly configurable, such planning becomes intractable due to the size of the adaptation space. To overcome this challenge, in this paper we explore an approach that (a) uses machine learning to find Pareto-optimal configurations without needing to explore every configuration and (b) restricts the search space to such configurations to make planning tractable. We explore this in the context of robot missions that need to consider task timeliness and energy consumption. An independent evaluation shows that our approach results in high-quality adaptation plans in uncertain and adversarial environments." @default.
- W2954865956 created "2019-07-12" @default.
- W2954865956 creator A5026724847 @default.
- W2954865956 creator A5045020317 @default.
- W2954865956 creator A5057348711 @default.
- W2954865956 creator A5064540250 @default.
- W2954865956 creator A5091731762 @default.
- W2954865956 date "2019-05-01" @default.
- W2954865956 modified "2023-10-02" @default.
- W2954865956 title "Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Autonomous Robots" @default.
- W2954865956 cites W1487850396 @default.
- W2954865956 cites W1974641445 @default.
- W2954865956 cites W1976103537 @default.
- W2954865956 cites W1990911977 @default.
- W2954865956 cites W2011973765 @default.
- W2954865956 cites W2034225360 @default.
- W2954865956 cites W2038361169 @default.
- W2954865956 cites W2042121628 @default.
- W2954865956 cites W2042154985 @default.
- W2954865956 cites W2047162235 @default.
- W2954865956 cites W2055906872 @default.
- W2954865956 cites W2067432065 @default.
- W2954865956 cites W2072617662 @default.
- W2954865956 cites W2084241559 @default.
- W2954865956 cites W2084627971 @default.
- W2954865956 cites W2086502833 @default.
- W2954865956 cites W2089281324 @default.
- W2954865956 cites W2099676063 @default.
- W2954865956 cites W2102053942 @default.
- W2954865956 cites W2103434431 @default.
- W2954865956 cites W2121589816 @default.
- W2954865956 cites W2133859873 @default.
- W2954865956 cites W2144979178 @default.
- W2954865956 cites W2146044140 @default.
- W2954865956 cites W2151351443 @default.
- W2954865956 cites W2163784380 @default.
- W2954865956 cites W2233451762 @default.
- W2954865956 cites W2234898815 @default.
- W2954865956 cites W2240989855 @default.
- W2954865956 cites W2317866228 @default.
- W2954865956 cites W2462858652 @default.
- W2954865956 cites W2482678392 @default.
- W2954865956 cites W2523338773 @default.
- W2954865956 cites W2527188357 @default.
- W2954865956 cites W2584686776 @default.
- W2954865956 cites W2604879234 @default.
- W2954865956 cites W2801750434 @default.
- W2954865956 cites W2898888361 @default.
- W2954865956 cites W2917146319 @default.
- W2954865956 cites W2964298054 @default.
- W2954865956 cites W3101049346 @default.
- W2954865956 cites W3125135890 @default.
- W2954865956 cites W3149292559 @default.
- W2954865956 cites W4233949481 @default.
- W2954865956 cites W4239863959 @default.
- W2954865956 cites W4241232921 @default.
- W2954865956 cites W647664907 @default.
- W2954865956 doi "https://doi.org/10.1109/seams.2019.00015" @default.
- W2954865956 hasPublicationYear "2019" @default.
- W2954865956 type Work @default.
- W2954865956 sameAs 2954865956 @default.
- W2954865956 citedByCount "41" @default.
- W2954865956 countsByYear W29548659562019 @default.
- W2954865956 countsByYear W29548659562020 @default.
- W2954865956 countsByYear W29548659562021 @default.
- W2954865956 countsByYear W29548659562022 @default.
- W2954865956 countsByYear W29548659562023 @default.
- W2954865956 crossrefType "proceedings-article" @default.
- W2954865956 hasAuthorship W2954865956A5026724847 @default.
- W2954865956 hasAuthorship W2954865956A5045020317 @default.
- W2954865956 hasAuthorship W2954865956A5057348711 @default.
- W2954865956 hasAuthorship W2954865956A5064540250 @default.
- W2954865956 hasAuthorship W2954865956A5091731762 @default.
- W2954865956 hasBestOaLocation W29548659562 @default.
- W2954865956 hasConcept C111472728 @default.
- W2954865956 hasConcept C119599485 @default.
- W2954865956 hasConcept C119857082 @default.
- W2954865956 hasConcept C120314980 @default.
- W2954865956 hasConcept C120665830 @default.
- W2954865956 hasConcept C121332964 @default.
- W2954865956 hasConcept C126255220 @default.
- W2954865956 hasConcept C127413603 @default.
- W2954865956 hasConcept C137635306 @default.
- W2954865956 hasConcept C138885662 @default.
- W2954865956 hasConcept C139807058 @default.
- W2954865956 hasConcept C151730666 @default.
- W2954865956 hasConcept C154945302 @default.
- W2954865956 hasConcept C201995342 @default.
- W2954865956 hasConcept C2779343474 @default.
- W2954865956 hasConcept C2779530757 @default.
- W2954865956 hasConcept C2780165032 @default.
- W2954865956 hasConcept C2780451532 @default.
- W2954865956 hasConcept C33923547 @default.
- W2954865956 hasConcept C34413123 @default.
- W2954865956 hasConcept C41008148 @default.
- W2954865956 hasConcept C81074085 @default.
- W2954865956 hasConcept C86803240 @default.
- W2954865956 hasConcept C90509273 @default.
- W2954865956 hasConceptScore W2954865956C111472728 @default.
- W2954865956 hasConceptScore W2954865956C119599485 @default.