Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954879441> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2954879441 endingPage "1780" @default.
- W2954879441 startingPage "1775" @default.
- W2954879441 abstract "Extreme Learning Machine (ELM) is a Single Layer Feed Forward Network (SLFN) model with extremely learning capacity and good generalization capabilities. Generally, the performance of ELM for classification task highly based on three factors such as the input weight matrix, the value of bias and the number of hidden neurons presented. ELM randomly chooses the input weights and biases and determines analytically the weights as output. The random selection of biases and the input weight produce an unforeseen result which causes training error and also produces lesser prediction accuracy. Bacterial Foraging Optimization algorithm (BFOA) was used to find the optimum input weight and hidden bias values for ELM. With the unequal distribution of classes in imbalanced data sets, ELM algorithms tussle to find good accuracy. So, ELM algorithm doesn’t get the necessary information about the minority class to make an accurate classification. To deal the issues associated with ELM, in this paper the hybrid algorithms Weighted ELM and Weighted ELM with BFO are proposed. Weighted ELM is proposed to handle the classification data that has imbalanced nature of class distribution. The main objective of weighted ELM is that the related weight value is computed and assigned for each training sample to increase the classification rate. Bacterial Foraging Optimization method is also integrated with the weighted ELM to find the optimum input weight and bias to maximize the classification accuracy. The comparative analysis has been performed over Hepatitis dataset. Further, the experimental results clearly revealed that one of the proposed methods Weighted ELM with BFO performs quite well when compared to others." @default.
- W2954879441 created "2019-07-12" @default.
- W2954879441 creator A5024287129 @default.
- W2954879441 creator A5060220765 @default.
- W2954879441 date "2018-07-01" @default.
- W2954879441 modified "2023-09-25" @default.
- W2954879441 title "Optimum Parameters Selection Using Bacterial Foraging Optimization for Weighted Extreme Learning Machine" @default.
- W2954879441 cites W1493775511 @default.
- W2954879441 cites W1554663460 @default.
- W2954879441 cites W2029784482 @default.
- W2954879441 cites W2061065224 @default.
- W2954879441 cites W2122122715 @default.
- W2954879441 cites W2134603844 @default.
- W2954879441 cites W2475251269 @default.
- W2954879441 cites W2512490694 @default.
- W2954879441 hasPublicationYear "2018" @default.
- W2954879441 type Work @default.
- W2954879441 sameAs 2954879441 @default.
- W2954879441 citedByCount "1" @default.
- W2954879441 countsByYear W29548794412021 @default.
- W2954879441 crossrefType "proceedings-article" @default.
- W2954879441 hasAuthorship W2954879441A5024287129 @default.
- W2954879441 hasAuthorship W2954879441A5060220765 @default.
- W2954879441 hasConcept C105795698 @default.
- W2954879441 hasConcept C11413529 @default.
- W2954879441 hasConcept C119857082 @default.
- W2954879441 hasConcept C134306372 @default.
- W2954879441 hasConcept C147581598 @default.
- W2954879441 hasConcept C153180895 @default.
- W2954879441 hasConcept C154945302 @default.
- W2954879441 hasConcept C165287380 @default.
- W2954879441 hasConcept C177148314 @default.
- W2954879441 hasConcept C18903297 @default.
- W2954879441 hasConcept C2780150128 @default.
- W2954879441 hasConcept C33923547 @default.
- W2954879441 hasConcept C41008148 @default.
- W2954879441 hasConcept C50644808 @default.
- W2954879441 hasConcept C81917197 @default.
- W2954879441 hasConcept C86803240 @default.
- W2954879441 hasConceptScore W2954879441C105795698 @default.
- W2954879441 hasConceptScore W2954879441C11413529 @default.
- W2954879441 hasConceptScore W2954879441C119857082 @default.
- W2954879441 hasConceptScore W2954879441C134306372 @default.
- W2954879441 hasConceptScore W2954879441C147581598 @default.
- W2954879441 hasConceptScore W2954879441C153180895 @default.
- W2954879441 hasConceptScore W2954879441C154945302 @default.
- W2954879441 hasConceptScore W2954879441C165287380 @default.
- W2954879441 hasConceptScore W2954879441C177148314 @default.
- W2954879441 hasConceptScore W2954879441C18903297 @default.
- W2954879441 hasConceptScore W2954879441C2780150128 @default.
- W2954879441 hasConceptScore W2954879441C33923547 @default.
- W2954879441 hasConceptScore W2954879441C41008148 @default.
- W2954879441 hasConceptScore W2954879441C50644808 @default.
- W2954879441 hasConceptScore W2954879441C81917197 @default.
- W2954879441 hasConceptScore W2954879441C86803240 @default.
- W2954879441 hasIssue "4" @default.
- W2954879441 hasLocation W29548794411 @default.
- W2954879441 hasOpenAccess W2954879441 @default.
- W2954879441 hasPrimaryLocation W29548794411 @default.
- W2954879441 hasRelatedWork W1187712878 @default.
- W2954879441 hasRelatedWork W1653626617 @default.
- W2954879441 hasRelatedWork W2002728347 @default.
- W2954879441 hasRelatedWork W2005045185 @default.
- W2954879441 hasRelatedWork W2008267519 @default.
- W2954879441 hasRelatedWork W2019718627 @default.
- W2954879441 hasRelatedWork W2048421915 @default.
- W2954879441 hasRelatedWork W2065060269 @default.
- W2954879441 hasRelatedWork W2079923265 @default.
- W2954879441 hasRelatedWork W2294293491 @default.
- W2954879441 hasRelatedWork W2484649559 @default.
- W2954879441 hasRelatedWork W2736183060 @default.
- W2954879441 hasRelatedWork W2883355198 @default.
- W2954879441 hasRelatedWork W2914205480 @default.
- W2954879441 hasRelatedWork W2947725060 @default.
- W2954879441 hasRelatedWork W2964119477 @default.
- W2954879441 hasRelatedWork W3029680286 @default.
- W2954879441 hasRelatedWork W3042582303 @default.
- W2954879441 hasRelatedWork W3048987381 @default.
- W2954879441 hasRelatedWork W3081327309 @default.
- W2954879441 hasVolume "8" @default.
- W2954879441 isParatext "false" @default.
- W2954879441 isRetracted "false" @default.
- W2954879441 magId "2954879441" @default.
- W2954879441 workType "article" @default.