Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954941287> ?p ?o ?g. }
- W2954941287 endingPage "372" @default.
- W2954941287 startingPage "363" @default.
- W2954941287 abstract "Arterial Spin Labelling (ASL) imaging derives a perfusion image by tracing the accumulation of magnetically labeled blood water in the brain. As the image generated has an intrinsically low signal to noise ratio (SNR), multiple measurements are routinely acquired and averaged, at a penalty of increased scan duration and opportunity for motion artefact. However, this strategy alone might be ineffective in clinical settings where the time available for acquisition is limited and patient motion are increased. This study investigates the use of an Independent Component Analysis (ICA) approach for denoising ASL data, and its potential for automation. 72 ASL datasets (pseudo-continuous ASL; 5 different post-labeling delays: 400, 800, 1200, 1600, 2000 m s; total volumes = 60) were collected from thirty consecutive acute stroke patients. The effects of ICA-based denoising (manual and automated) where compared to two different denoising approaches, aCompCor, a Principal Component-based method, and Enhancement of Automated Blood Flow Estimates (ENABLE), an algorithm based on the removal of corrupted volumes. Multiple metrics were used to assess the changes in the quality of the data following denoising, including changes in cerebral blood flow (CBF) and arterial transit time (ATT), SNR, and repeatability. Additionally, the relationship between SNR and number of repetitions acquired was estimated before and after denoising the data. The use of an ICA-based denoising approach resulted in significantly higher mean CBF and ATT values (p < 0.001), lower CBF and ATT variance (p < 0.001), increased SNR (p < 0.001), and improved repeatability (p < 0.05) when compared to the raw data. The performance of manual and automated ICA-based denoising was comparable. These results went beyond the effects of aCompCor or ENABLE. Following ICA-based denoising, the SNR was higher using only 50% of the ASL-dataset collected than when using the whole raw data. The results show that ICA can be used to separate signal from noise in ASL data, improving the quality of the data collected. In fact, this study suggests that the acquisition time could be reduced by 50% without penalty to data quality, something that merits further study. Independent component classification and regression can be carried out either manually, following simple criteria, or automatically." @default.
- W2954941287 created "2019-07-12" @default.
- W2954941287 creator A5001596439 @default.
- W2954941287 creator A5042454161 @default.
- W2954941287 creator A5051206783 @default.
- W2954941287 creator A5056669810 @default.
- W2954941287 creator A5063211532 @default.
- W2954941287 creator A5074082631 @default.
- W2954941287 creator A5076720355 @default.
- W2954941287 creator A5084593174 @default.
- W2954941287 date "2019-10-01" @default.
- W2954941287 modified "2023-09-27" @default.
- W2954941287 title "ICA-based denoising for ASL perfusion imaging" @default.
- W2954941287 cites W1773336933 @default.
- W2954941287 cites W1895566498 @default.
- W2954941287 cites W1964982672 @default.
- W2954941287 cites W1970632050 @default.
- W2954941287 cites W1971057552 @default.
- W2954941287 cites W1972722418 @default.
- W2954941287 cites W1973990950 @default.
- W2954941287 cites W1988602937 @default.
- W2954941287 cites W1997260622 @default.
- W2954941287 cites W2007536372 @default.
- W2954941287 cites W2015575582 @default.
- W2954941287 cites W2022242357 @default.
- W2954941287 cites W2036630433 @default.
- W2954941287 cites W2048928173 @default.
- W2954941287 cites W2052615191 @default.
- W2954941287 cites W2052644075 @default.
- W2954941287 cites W2055518130 @default.
- W2954941287 cites W2071881327 @default.
- W2954941287 cites W2085757041 @default.
- W2954941287 cites W2116641010 @default.
- W2954941287 cites W2117621792 @default.
- W2954941287 cites W2118366819 @default.
- W2954941287 cites W2130010412 @default.
- W2954941287 cites W2136573752 @default.
- W2954941287 cites W2148726987 @default.
- W2954941287 cites W2152910484 @default.
- W2954941287 cites W2153417835 @default.
- W2954941287 cites W2157446241 @default.
- W2954941287 cites W2167106959 @default.
- W2954941287 cites W2167234030 @default.
- W2954941287 cites W2623854426 @default.
- W2954941287 cites W2728852007 @default.
- W2954941287 cites W2732921356 @default.
- W2954941287 cites W2787867590 @default.
- W2954941287 cites W2953090092 @default.
- W2954941287 cites W2977883299 @default.
- W2954941287 cites W4233867216 @default.
- W2954941287 cites W4235770099 @default.
- W2954941287 doi "https://doi.org/10.1016/j.neuroimage.2019.07.002" @default.
- W2954941287 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6711457" @default.
- W2954941287 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31276796" @default.
- W2954941287 hasPublicationYear "2019" @default.
- W2954941287 type Work @default.
- W2954941287 sameAs 2954941287 @default.
- W2954941287 citedByCount "12" @default.
- W2954941287 countsByYear W29549412872020 @default.
- W2954941287 countsByYear W29549412872021 @default.
- W2954941287 countsByYear W29549412872022 @default.
- W2954941287 countsByYear W29549412872023 @default.
- W2954941287 crossrefType "journal-article" @default.
- W2954941287 hasAuthorship W2954941287A5001596439 @default.
- W2954941287 hasAuthorship W2954941287A5042454161 @default.
- W2954941287 hasAuthorship W2954941287A5051206783 @default.
- W2954941287 hasAuthorship W2954941287A5056669810 @default.
- W2954941287 hasAuthorship W2954941287A5063211532 @default.
- W2954941287 hasAuthorship W2954941287A5074082631 @default.
- W2954941287 hasAuthorship W2954941287A5076720355 @default.
- W2954941287 hasAuthorship W2954941287A5084593174 @default.
- W2954941287 hasBestOaLocation W29549412872 @default.
- W2954941287 hasConcept C105795698 @default.
- W2954941287 hasConcept C115961682 @default.
- W2954941287 hasConcept C135691158 @default.
- W2954941287 hasConcept C13944312 @default.
- W2954941287 hasConcept C146957229 @default.
- W2954941287 hasConcept C153180895 @default.
- W2954941287 hasConcept C154020017 @default.
- W2954941287 hasConcept C154945302 @default.
- W2954941287 hasConcept C157767197 @default.
- W2954941287 hasConcept C158846371 @default.
- W2954941287 hasConcept C163294075 @default.
- W2954941287 hasConcept C164705383 @default.
- W2954941287 hasConcept C27438332 @default.
- W2954941287 hasConcept C2989005 @default.
- W2954941287 hasConcept C3018723549 @default.
- W2954941287 hasConcept C33923547 @default.
- W2954941287 hasConcept C41008148 @default.
- W2954941287 hasConcept C51432778 @default.
- W2954941287 hasConcept C55020928 @default.
- W2954941287 hasConcept C71924100 @default.
- W2954941287 hasConcept C99498987 @default.
- W2954941287 hasConceptScore W2954941287C105795698 @default.
- W2954941287 hasConceptScore W2954941287C115961682 @default.
- W2954941287 hasConceptScore W2954941287C135691158 @default.
- W2954941287 hasConceptScore W2954941287C13944312 @default.
- W2954941287 hasConceptScore W2954941287C146957229 @default.