Matches in SemOpenAlex for { <https://semopenalex.org/work/W2954995481> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2954995481 endingPage "23" @default.
- W2954995481 startingPage "18" @default.
- W2954995481 abstract "The pervasiveness of mobile devices equipped with positioning proficiencies has managed to the emergence of frequent location-based applications and services. A huge fraction of the information sought is related to the current women position. This comprises queries for nearby medical services, specialized stores, social activities and groups, and others. In general, location-based service (LBS) operators are expected to be trusted parties that preserve the user’s privacy. Due to the sensitive nature of the information accessed by these parties and recurrent information leakages that have been recorded, the privacy of users that access location-based services is at risk. User’s privacy can be breached by linking one’s identity, location, and query content. On certain scenarios, knowing one’s location is sufficient to derive his identity (e.g. if this location is the user’s residence, office, etc.). In this paper, to address the problem of preserving the location privacy and user anonymity of mobile users accessing authenticated location-based services. To design trust based deep learning model (TBDL) for women information security improvement in LBS that preserve the women user privacy without relying on any trusted entity. A prescribed TBDL model is desirable to theoretically evaluate protection of solutions with respect to specific attack`s Solutions as well it should be empirically validated in terms of performance and quality of service. A considerable effort is essential to acquire realistic or productive real data. Our deep learning model is created to support users to create precise decisions in protecting their location-based privacy." @default.
- W2954995481 created "2019-07-12" @default.
- W2954995481 creator A5014562528 @default.
- W2954995481 creator A5067147541 @default.
- W2954995481 date "2019-06-13" @default.
- W2954995481 modified "2023-09-27" @default.
- W2954995481 title "Trust Based Deep Learning Model for Women Information Security Improvement in LBS" @default.
- W2954995481 hasPublicationYear "2019" @default.
- W2954995481 type Work @default.
- W2954995481 sameAs 2954995481 @default.
- W2954995481 citedByCount "0" @default.
- W2954995481 crossrefType "journal-article" @default.
- W2954995481 hasAuthorship W2954995481A5014562528 @default.
- W2954995481 hasAuthorship W2954995481A5067147541 @default.
- W2954995481 hasConcept C108827166 @default.
- W2954995481 hasConcept C116537 @default.
- W2954995481 hasConcept C121332964 @default.
- W2954995481 hasConcept C123201435 @default.
- W2954995481 hasConcept C136764020 @default.
- W2954995481 hasConcept C144133560 @default.
- W2954995481 hasConcept C155292070 @default.
- W2954995481 hasConcept C162853370 @default.
- W2954995481 hasConcept C169093310 @default.
- W2954995481 hasConcept C178005623 @default.
- W2954995481 hasConcept C186967261 @default.
- W2954995481 hasConcept C24890656 @default.
- W2954995481 hasConcept C2778355321 @default.
- W2954995481 hasConcept C2780378061 @default.
- W2954995481 hasConcept C31258907 @default.
- W2954995481 hasConcept C38652104 @default.
- W2954995481 hasConcept C41008148 @default.
- W2954995481 hasConceptScore W2954995481C108827166 @default.
- W2954995481 hasConceptScore W2954995481C116537 @default.
- W2954995481 hasConceptScore W2954995481C121332964 @default.
- W2954995481 hasConceptScore W2954995481C123201435 @default.
- W2954995481 hasConceptScore W2954995481C136764020 @default.
- W2954995481 hasConceptScore W2954995481C144133560 @default.
- W2954995481 hasConceptScore W2954995481C155292070 @default.
- W2954995481 hasConceptScore W2954995481C162853370 @default.
- W2954995481 hasConceptScore W2954995481C169093310 @default.
- W2954995481 hasConceptScore W2954995481C178005623 @default.
- W2954995481 hasConceptScore W2954995481C186967261 @default.
- W2954995481 hasConceptScore W2954995481C24890656 @default.
- W2954995481 hasConceptScore W2954995481C2778355321 @default.
- W2954995481 hasConceptScore W2954995481C2780378061 @default.
- W2954995481 hasConceptScore W2954995481C31258907 @default.
- W2954995481 hasConceptScore W2954995481C38652104 @default.
- W2954995481 hasConceptScore W2954995481C41008148 @default.
- W2954995481 hasIssue "1" @default.
- W2954995481 hasLocation W29549954811 @default.
- W2954995481 hasOpenAccess W2954995481 @default.
- W2954995481 hasPrimaryLocation W29549954811 @default.
- W2954995481 hasRelatedWork W14163554 @default.
- W2954995481 hasRelatedWork W1503213669 @default.
- W2954995481 hasRelatedWork W1512757488 @default.
- W2954995481 hasRelatedWork W1536017417 @default.
- W2954995481 hasRelatedWork W1622273578 @default.
- W2954995481 hasRelatedWork W1977269957 @default.
- W2954995481 hasRelatedWork W2021280697 @default.
- W2954995481 hasRelatedWork W2189367138 @default.
- W2954995481 hasRelatedWork W2359057309 @default.
- W2954995481 hasRelatedWork W2383987969 @default.
- W2954995481 hasRelatedWork W2404804190 @default.
- W2954995481 hasRelatedWork W2473728294 @default.
- W2954995481 hasRelatedWork W2801235119 @default.
- W2954995481 hasRelatedWork W2898845157 @default.
- W2954995481 hasRelatedWork W2963360103 @default.
- W2954995481 hasRelatedWork W2972263771 @default.
- W2954995481 hasRelatedWork W3015113494 @default.
- W2954995481 hasRelatedWork W3048415569 @default.
- W2954995481 hasRelatedWork W2586546295 @default.
- W2954995481 hasRelatedWork W3099812238 @default.
- W2954995481 hasVolume "7" @default.
- W2954995481 isParatext "false" @default.
- W2954995481 isRetracted "false" @default.
- W2954995481 magId "2954995481" @default.
- W2954995481 workType "article" @default.