Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955002903> ?p ?o ?g. }
- W2955002903 endingPage "8130" @default.
- W2955002903 startingPage "8118" @default.
- W2955002903 abstract "Most of the existing hyperspectral anomaly detectors only consider the difference between anomaly pixels and background pixels. These methods may mistakenly detect some regions in a complex background that contains various ground covers, since some background regions and anomaly objects may have similar spectral or spatial characteristics. Therefore, with a new perspective, this paper introduces a novel manifold ranking-based detection framework (MRDF). In addition to capturing the difference between anomaly pixels and background pixels, this detection framework exploits the similarity between anomaly pixels for detection. Specifically, the proposed detection framework comprises three main steps. First, the Reed–Xiaoli method is applied to capture the spectral difference between anomaly pixels and background pixels, and an initial detection map can be obtained. A set of anomaly queries are obtained automatically by employing the binary segmentation to the initial detection map. Then, we construct a closed-loop graph to characterize the spatial similarity between adjoining nodes where each node is a superpixel. Finally, a manifold ranking technique is employed to estimate the ranking value of every node based on the similarity between the test node and anomaly queries. By normalizing the ranking value of each node, a final detection map is generated. Abundant experiments are conducted on four real hyperspectral data sets. It is found that the proposed detection framework obtains a better detection performance than the current state-of-the-art detectors." @default.
- W2955002903 created "2019-07-12" @default.
- W2955002903 creator A5063874284 @default.
- W2955002903 creator A5067097659 @default.
- W2955002903 date "2019-10-01" @default.
- W2955002903 modified "2023-10-17" @default.
- W2955002903 title "From Difference to Similarity: A Manifold Ranking-Based Hyperspectral Anomaly Detection Framework" @default.
- W2955002903 cites W1973653666 @default.
- W2955002903 cites W1988177629 @default.
- W2955002903 cites W1991190032 @default.
- W2955002903 cites W1998691552 @default.
- W2955002903 cites W2004491663 @default.
- W2955002903 cites W2010702969 @default.
- W2955002903 cites W2040078680 @default.
- W2955002903 cites W2040812261 @default.
- W2955002903 cites W2047870694 @default.
- W2955002903 cites W2054903578 @default.
- W2955002903 cites W2069231830 @default.
- W2955002903 cites W2098152234 @default.
- W2955002903 cites W2118246710 @default.
- W2955002903 cites W2118509786 @default.
- W2955002903 cites W2123015183 @default.
- W2955002903 cites W2124463804 @default.
- W2955002903 cites W2125407560 @default.
- W2955002903 cites W2125637308 @default.
- W2955002903 cites W2135431554 @default.
- W2955002903 cites W2140340527 @default.
- W2955002903 cites W2145858287 @default.
- W2955002903 cites W2149659501 @default.
- W2955002903 cites W2154946129 @default.
- W2955002903 cites W2158340226 @default.
- W2955002903 cites W2163129097 @default.
- W2955002903 cites W2163884840 @default.
- W2955002903 cites W2165447611 @default.
- W2955002903 cites W2219019129 @default.
- W2955002903 cites W2288752886 @default.
- W2955002903 cites W2288987301 @default.
- W2955002903 cites W2295576075 @default.
- W2955002903 cites W2316226477 @default.
- W2955002903 cites W2343117455 @default.
- W2955002903 cites W2424277038 @default.
- W2955002903 cites W2497075055 @default.
- W2955002903 cites W2508114009 @default.
- W2955002903 cites W2519307493 @default.
- W2955002903 cites W2590856740 @default.
- W2955002903 cites W2592141703 @default.
- W2955002903 cites W2616727008 @default.
- W2955002903 cites W2617050030 @default.
- W2955002903 cites W2626256547 @default.
- W2955002903 cites W2712182744 @default.
- W2955002903 cites W2739951208 @default.
- W2955002903 cites W2740976805 @default.
- W2955002903 cites W2743091961 @default.
- W2955002903 cites W2750586932 @default.
- W2955002903 cites W2753754894 @default.
- W2955002903 cites W2760789773 @default.
- W2955002903 cites W2761917471 @default.
- W2955002903 cites W2766387201 @default.
- W2955002903 cites W2771296580 @default.
- W2955002903 cites W2773266593 @default.
- W2955002903 cites W2789345570 @default.
- W2955002903 cites W2789806937 @default.
- W2955002903 cites W2791928749 @default.
- W2955002903 cites W2792083654 @default.
- W2955002903 cites W2792111852 @default.
- W2955002903 cites W2793645503 @default.
- W2955002903 cites W2796629918 @default.
- W2955002903 cites W2800662010 @default.
- W2955002903 cites W2800955846 @default.
- W2955002903 cites W2802773275 @default.
- W2955002903 cites W2804744787 @default.
- W2955002903 cites W2829067510 @default.
- W2955002903 cites W2884073548 @default.
- W2955002903 cites W2901594469 @default.
- W2955002903 cites W2903882147 @default.
- W2955002903 cites W2905376923 @default.
- W2955002903 cites W4212906384 @default.
- W2955002903 doi "https://doi.org/10.1109/tgrs.2019.2918342" @default.
- W2955002903 hasPublicationYear "2019" @default.
- W2955002903 type Work @default.
- W2955002903 sameAs 2955002903 @default.
- W2955002903 citedByCount "14" @default.
- W2955002903 countsByYear W29550029032020 @default.
- W2955002903 countsByYear W29550029032021 @default.
- W2955002903 countsByYear W29550029032022 @default.
- W2955002903 countsByYear W29550029032023 @default.
- W2955002903 crossrefType "journal-article" @default.
- W2955002903 hasAuthorship W2955002903A5063874284 @default.
- W2955002903 hasAuthorship W2955002903A5067097659 @default.
- W2955002903 hasConcept C103278499 @default.
- W2955002903 hasConcept C115961682 @default.
- W2955002903 hasConcept C124101348 @default.
- W2955002903 hasConcept C127313418 @default.
- W2955002903 hasConcept C153180895 @default.
- W2955002903 hasConcept C154945302 @default.
- W2955002903 hasConcept C159078339 @default.
- W2955002903 hasConcept C189430467 @default.
- W2955002903 hasConcept C41008148 @default.