Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955109214> ?p ?o ?g. }
- W2955109214 endingPage "85412" @default.
- W2955109214 startingPage "85401" @default.
- W2955109214 abstract "With the rapid development of the Internet industry, sentiment analysis has grown into one of the popular areas of natural language processing (NLP). Through it, the implicit emotion in the text can be effectively mined, which can help enterprises or organizations to make an effective decision, and the explosive growth of data undoubtedly brings more opportunities and challenges to the sentiment analysis. At the same time, transfer learning has emerged as a new machine learning technique that uses the existing knowledge to solve different domain problems and produces state-of-the-art prediction results. Many scholars apply transfer learning to the field of the sentiment analysis. This survey summarizes the relevant research results of the sentiment analysis in recent years and focuses on the algorithms and applications of transfer learning in the sentiment analysis, and we look forward to the development trend of the sentiment analysis." @default.
- W2955109214 created "2019-07-12" @default.
- W2955109214 creator A5005920332 @default.
- W2955109214 creator A5030959754 @default.
- W2955109214 creator A5061965600 @default.
- W2955109214 creator A5065665452 @default.
- W2955109214 date "2019-01-01" @default.
- W2955109214 modified "2023-10-18" @default.
- W2955109214 title "A Survey of Sentiment Analysis Based on Transfer Learning" @default.
- W2955109214 cites W1832693441 @default.
- W2955109214 cites W1885086035 @default.
- W2955109214 cites W1968215287 @default.
- W2955109214 cites W1973723602 @default.
- W2955109214 cites W1983738652 @default.
- W2955109214 cites W2001640531 @default.
- W2955109214 cites W2019759670 @default.
- W2955109214 cites W2023655138 @default.
- W2955109214 cites W2037265949 @default.
- W2955109214 cites W2055103902 @default.
- W2955109214 cites W2067890182 @default.
- W2955109214 cites W2078309899 @default.
- W2955109214 cites W2092560274 @default.
- W2955109214 cites W2122838776 @default.
- W2955109214 cites W2149167588 @default.
- W2955109214 cites W2153353890 @default.
- W2955109214 cites W2158108973 @default.
- W2955109214 cites W2160660844 @default.
- W2955109214 cites W2165698076 @default.
- W2955109214 cites W2168625136 @default.
- W2955109214 cites W2215376118 @default.
- W2955109214 cites W2250966211 @default.
- W2955109214 cites W2252012216 @default.
- W2955109214 cites W2253519362 @default.
- W2955109214 cites W2306941105 @default.
- W2955109214 cites W2368278370 @default.
- W2955109214 cites W2395579298 @default.
- W2955109214 cites W2398668521 @default.
- W2955109214 cites W2401379394 @default.
- W2955109214 cites W2470673105 @default.
- W2955109214 cites W2535887726 @default.
- W2955109214 cites W2540860795 @default.
- W2955109214 cites W2572969853 @default.
- W2955109214 cites W2624147939 @default.
- W2955109214 cites W2735735104 @default.
- W2955109214 cites W2739677115 @default.
- W2955109214 cites W2744316982 @default.
- W2955109214 cites W2744871919 @default.
- W2955109214 cites W275503268 @default.
- W2955109214 cites W2768787743 @default.
- W2955109214 cites W2782796222 @default.
- W2955109214 cites W2889366722 @default.
- W2955109214 cites W2901640993 @default.
- W2955109214 cites W2962739339 @default.
- W2955109214 cites W2963026768 @default.
- W2955109214 cites W2963168371 @default.
- W2955109214 cites W2963418726 @default.
- W2955109214 cites W2964236337 @default.
- W2955109214 cites W4252229072 @default.
- W2955109214 doi "https://doi.org/10.1109/access.2019.2925059" @default.
- W2955109214 hasPublicationYear "2019" @default.
- W2955109214 type Work @default.
- W2955109214 sameAs 2955109214 @default.
- W2955109214 citedByCount "104" @default.
- W2955109214 countsByYear W29551092142019 @default.
- W2955109214 countsByYear W29551092142020 @default.
- W2955109214 countsByYear W29551092142021 @default.
- W2955109214 countsByYear W29551092142022 @default.
- W2955109214 countsByYear W29551092142023 @default.
- W2955109214 crossrefType "journal-article" @default.
- W2955109214 hasAuthorship W2955109214A5005920332 @default.
- W2955109214 hasAuthorship W2955109214A5030959754 @default.
- W2955109214 hasAuthorship W2955109214A5061965600 @default.
- W2955109214 hasAuthorship W2955109214A5065665452 @default.
- W2955109214 hasBestOaLocation W29551092141 @default.
- W2955109214 hasConcept C108583219 @default.
- W2955109214 hasConcept C110875604 @default.
- W2955109214 hasConcept C119857082 @default.
- W2955109214 hasConcept C134306372 @default.
- W2955109214 hasConcept C136764020 @default.
- W2955109214 hasConcept C150899416 @default.
- W2955109214 hasConcept C154945302 @default.
- W2955109214 hasConcept C202444582 @default.
- W2955109214 hasConcept C204321447 @default.
- W2955109214 hasConcept C2522767166 @default.
- W2955109214 hasConcept C33923547 @default.
- W2955109214 hasConcept C36503486 @default.
- W2955109214 hasConcept C41008148 @default.
- W2955109214 hasConcept C66402592 @default.
- W2955109214 hasConcept C9652623 @default.
- W2955109214 hasConceptScore W2955109214C108583219 @default.
- W2955109214 hasConceptScore W2955109214C110875604 @default.
- W2955109214 hasConceptScore W2955109214C119857082 @default.
- W2955109214 hasConceptScore W2955109214C134306372 @default.
- W2955109214 hasConceptScore W2955109214C136764020 @default.
- W2955109214 hasConceptScore W2955109214C150899416 @default.
- W2955109214 hasConceptScore W2955109214C154945302 @default.
- W2955109214 hasConceptScore W2955109214C202444582 @default.
- W2955109214 hasConceptScore W2955109214C204321447 @default.